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I. INTRODUCTION
A critical issue in fault detection is the selection of appro-

priate metrics to assess diagnostic performance. For instance,
in robust fault detection, mixing metric H∞/H has been
proposed to balance disturbance rejection and fault sensitivity
through optimization approaches [1]. However, this metric
suffers from conservatism because it separately evaluates the
worst-case disturbance robustness through H∞ norm and the
worst-case fault sensitivity through H index. Moreover, the
value of the H index becomes zero for faulty systems with
non-minimum phase (NMP) zeros across the full frequency
domain. To address these limitations, the authors in [2]
introduced output-to-output (OOG) gain, a novel metric for
quantifying the performance loss under stealthy injection
attacks. Unlike traditional metrics that impose constraints
on transfer functions, OOG directly computes the maximum
performance loss in the output for all stealthy attacks.
This integrates both attack impact and detectability while
accounting for NMP zeros.

Given that the OOG method is designed for attack strategy
only, this study explores its possible extension to robust
fault detection. We develop an input-to-input (IIG) gain to
measure fault sensitivity and disturbance robustness, offering
a valuable alternative to conventional metrics. However,
the conflicting nature of design constraints in IIG, coupled
with some intrinsic system properties (zeros, poles, etc.),
impose fundamental limitations on achievable performance
of IIG. By leveraging the Poisson integral relation [3], this
study further investigates the fundamental limitations of the
proposed diagnostic metric .

II. PROBLEM FORMULATION

Let us consider a continuous-time LTI system

Σ :

{
ẋ(t) = Ax(t) +Bdd(t) +Bff(t)
r(t) = Cx(t) +Ddd(t) +Dff(t),

(1)

where x(t) ∈ Rnx , d(t) ∈ Rnd , f(t) ∈ Rnf , and r(t) ∈ Rnr

denote the state, disturbance, fault, and residual, respectively.
The system (1) can be interpreted as a general form of
a closed-loop system incorporating a fault detection ob-
server [1]. The pair (A,C) is assumed to be observable. The
residual r is used to indicate the occurrence of faults, which
can be written as

r = Tdr[d] +Tfr[f ], (2)
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where Tdr and Tfr are the transfer functions from d to r
and from f to r, respectively.

Given the effect of disturbances, we define a fault to be
undetectable if the ℓ2 norm of r satisfies:

∥r∥2ℓ2 = ∥Tdr[d] +Tfr[f ]∥2ℓ2 ≤ ∥Tdr[d]∥2ℓ2 . (3)

This implies that the effect of f on r is masked by that
of d. Moreover, the energy of d is assumed to be bounded,
i.e., ∥d∥2ℓ2 ≤ 1, with the upper bound set to 1 without loss
of generality.

Note that a larger undetectable fault indicates lower fault
sensitivity. Thus, by calculating the maximum energy of
undetectable faults characterized by (3), one can evaluate
the fault sensitivity of (1). We then formulate the following
optimization problem to find the largest fault that remains
undetectable with respect to a given disturbance intensity:

∥Σ∥2ℓ2e,f←d
∆
= sup

f,d∈ℓ2e
∥f∥2ℓ2

s.t. (1), x(0) = 0,

∥Tdr[d] +Tfr[f ]∥2ℓ2 ≤ ∥Tdr[d]∥2ℓ2 ,
∥d∥2ℓ2 ≤ 1. (4)

The optimal value ∥Σ∥2ℓ2e,f←d serves as a novel metric for
fault sensitivity and is defined as IIG of Σ.

To simplify the subsequent analysis, we restrict our study
to a special class of systems subject to periodic trajectories
and consider that all inputs and outputs in (1) are one-
dimensional signals. Based on the above setting, this study
primarily focuses on identifying the fundamental limitations
of IIG proposed in (4).

III. MAIN RESULTS

First, the undetectability condition (3), which characterizes
all undetectable faults, is modified in the following lemma
to derive a frequency-domain condition for IIG.

Lemma 1 (Reformulated undetectability condition). Con-
sider the LTI system in (1). The undetectability condition (3)
together with ∥d∥2ℓ2 ≤ 1 can be realized through:

Tdr[d̃] = Tfr[f ], ∥d̃∥2ℓ2 ≤ ξ2, ξ ∈ [0, 2]. (5)

Proof. The proof is omitted here due to space limitation.

While the condition (5) may be restrictive, requiring d and
f to have the same output (up to a scale), we note that the
condition naturally arises in the context of indistinguishabil-
ity between fault and disturbances [1, Chapter 4].



We further apply the left co-prime factorization to Tfr

and Tdr:

Tfr = M−1I Nf , Tdr = M−1I Nd. (6)

Note that zeros in Tfr coincide with those in Nf . In the
subsequent analysis, we assume that Nf have no NMP zeros
as IIG value becomes infinite with certain inputs aligned with
these NMP zeros, as demonstrated in [2, Theorem 2].

To simplify the notation, let us define γ ≜ ∥Σ∥2
ℓ2e,f←d̃

.
Now, we are in the position to present the frequency-domain
inequality of the IIG in (4) with the undetectability condition
replaced by (5).

Theorem 1 (Frequency domain inequality of IIG). Assume
that the LTI systems in (1) is subject to periodic trajectories
and consider that all the input and output signals are one-
dimensional. Given the co-prime factorization in (6) with
stable Nf , the optimal performance metrics introduced in (4)
with the replaced condition (5) satisfy:

γ ≥ ξ2
∥∥∥∥Nd

Nf

∥∥∥∥2
H∞

. (7)

Proof. The proof is omitted due to space limitation.

Furthermore, we establish relations between the de-
veloped IIG metric with the existing diagnostic metrics,
namely, H∞/H∞ and H∞/H employed in robust detection
filter design, in the following corollary.

Corollary 1 (Relation with existing metrics). The IIG metric
developed in (7) satisfies the following bounds:

∥Tdr∥2H∞

∥Tfr∥2H∞

≤
∥∥∥∥Nd

Nf

∥∥∥∥2
H∞

≤
∥Tdr∥2H∞

∥Tfr∥2H
. (8)

Proof. The proof is omitted here due to space limitation.

To facilitate the derivation of the performance limitations
in (7), we introduce the following notations. Let us define:

SI =
Nd

Nf
, PI = 1− Nd

Nf
, (9)

The NMP zeros of SI are denoted as µi ∈ ZSI
, i =

{1, . . . , nµ}, and those of PI are denoted as νi ∈ ZPI
, i =

{1, . . . , nν}. Then, SI and PI can be factorized as

SI = S̃IBSI
, PI = P̃IBPI

, (10)

where S̃I and P̃I are the corresponding minimum-phase
parts. The Blaschke products of NMP zeros in SI and PI

are denoted as BSI
and BPI

, which are given by

BSI
(s) =

nµ∏
i=1

s− µi

s+ µ̄i
, BPI

(s) =

nν∏
i=1

s− νi
s+ ν̄i

.

Note that BSI
and BPI

are all-pass filters, i.e., |BSI
(jω)| =

|BPI
(jω)| = 1. If the set of NMP zeros is empty, we define

the corresponding Blaschke product to be 1.
We then provide the performance limitations of IIG in the

following theorem.
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Fig. 1. Performance bound for ∥SI∥H∞ .

Theorem 2 (Performance limitations of IIG). Consider the
inequality developed for IIG in (7) and the factorization
results in (10). The performance limitations for SI satisfy

||SI ||H∞ ≥ max
µh∈ZSI

,νk∈ZPI

{
|B−1SI

(νk)|, |B−1PI
(µh)| − 1

}
.

Proof. The proof is omitted here due to space limitation.

Theorem 2 relates the performance limitations of IIG to
its NMP zeros. The lower bound is strictly larger than 1 if
both SI and PI have NMP zeros, with the value determined
by the distance between their NMP zeros: (1) The bound
approaches 1 when the NMP zeros µh and νk are far apart.
In this case, the performance bound does not closely reflect
the actual value of ||SI ||H∞ ; (2) The bound increases sig-
nificantly when the NMP zeros µh and νk are close to each
other, indicating the existence of large undetectable faults.
Moreover, it is worth emphasizing that Nd and Nf − Nd

cannot share common NMP zeros because such a zero would
also be an NMP zero of Nr, which, by assumption, has no
NMP zeros in this study. The obtained results are validated
through numerical examples in the following section.

IV. NUMERICAL EXAMPLES

Consider transfer functions in (1) as follows:

Tfr(s) =
(s+ 0.1)(s+ 0.2)(s+ 0.6)

(s+ 0.3)(s+ 0.4)(s+ 0.5)
,

Tdr(s) =
(s+ 1)(s− 0.04)(s− τ)

(s+ 0.3)(s+ 0.4)(s+ 0.5)
,

where Tdr contains a NMP zero at 0.04 and a varying zero τ .
We examine how the performance bound varies with respect
to τ . Specifically, as the magnitude of τ increases in both
directions, the NMP zero of Nf − Nd gets close to that of
Nd at 0.04. As a result, the performance bound of ∥SI∥H∞

increases when τ deviates from 0, as depicted in Fig. 1. This
aligns with the theoretical results.
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