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Abstract—This paper presents an optimal Kalman filtering (KF)
method for distributed systems where agents have unequal state
vectors. In contrary to traditional distributed KF methods, the
prediction is done centrally at the server. The proposed method
allows for an analytically optimal linear estimator that facilitates
data transfer efficiency, privacy, and scalability, particularly in
scenarios where subsystems have large numbers of measurements.
The approach avoids the dimensionality challenges in centralized
systems by maintaining local estimates at the distributed agents
and minimizing the data transmitted to a central server.

Index Terms—Distributed Kalman Filter, Unequal state vectors,
Distributed estimation, Kalman Filtering

I. BACKGROUND

In dynamic systems, the choice of estimation method is
driven by the system’s characteristics. For systems that are
linear with Gaussian noise, the centralized Kalman Filter (KF)
provides an optimal Bayesian estimate [1]. The centralized KF
assumes a centralized system that has access to all measured
data. If the data is collected in a distributed manner, this may
not be possible in a practical setting. Accessing all data can be
problematic due to privacy concerns, highlighted in Federated
Learning (FL) [2], and communication limitations [3].

An alternative to centralized estimation is Distributed Data
Fusion (DDF). In DDF, each agent estimates the system states
individually, which are then fused to obtain a more accurate
estimate than any individual estimate. The Bar-Shalom/Campo
(BC) fuser [4] is an optimal way of fusing two estimates of
the same state. A limitation of the BC fuser is that it requires
knowledge of the cross-covariance between estimates, which is
rarely available in practical applications. If the cross covariance
is (wrongly) assumed to be zero, the resulting fusion is called
naive. Covariance Intersection (CI) [5] offers an alternative
to naive fusion, it provides conservative fusion irrespective of
cross covariances, meaning that it does not underestimate the
covariance of the fused estimate. However, CI cannot be directly
applied when distributed agents estimate different subspaces of
a full global state, a scenario known as distributed estimation
of unequal states [6].

In this paper, we propose a novel strategy for distributed
estimation of unequal state vectors by using a global prior for
the distributed agents. This differs from the typical setup seen
in literature where priors are local to each agent. To the best of
the authors knowledge, this has not previously been considered.
This maintains the privacy of the measurements and if the
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distributed agents have more measurements than states, it also
reduces the complexity of centralized computations.

II. PROBLEM FORMULATION

This paper considers the linear estimation of a global state
using local distributed estimates of its subspaces. The global
system is characterized by the discrete time process

x∗
n = Anx

∗
n−1 + w∗

n (1)

where An ∈ Rdx∗×dx∗ , x∗
n ∈ Rdx∗ and w∗

n ∈ Rdx∗ are
the system matrix, the state vector, and zero mean white
Gaussian process noise with covariance matrix Q∗

n at time
n, respectively. The superscript x∗ denotes the global state
vector. Each distributed subsystem state is given by
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where xl
n ∈ Rd

xl , denotes the lth local state and Ml
n ∈

Rd
xl×dx∗ is a mapping from the global state to the subsystem.
Each agent measures an arbitrary subset of the local states
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where yln ∈ Rd
yl is the measurement, Hl

n ∈ Rd
yl×d

xl is the
observation matrix, and vln ∈ Rd

yl is zero mean white Gaussian
measurement noise with covariance matrix Rl

n ∈ Rd
yl×d

yl . It
is assumed that there is no relation between measurements in
different subsystems, which means that local subsystems only
measure their own states and Cov(vin, v

j
n) = 0, ∀ i ̸= j.

Assuming that all measurement data y∗n, with corresponding
covariance matrix R∗

n, and global observation matrix H∗
n ∈

Rdy∗×dx∗ , are available at a centralized server, the optimal
estimate of the global system, is given by the centralized KF.

The global KF will provide an optimal estimate, but there
are practical and privacy concerning challenges regarding the
measurements of the subsystems. Transferring the raw data may
require using a lot of bandwidth, and the distributed agents
may not want to share their data with other agents or the
centralized server. Hence, we consider the case where each
agent performs a local measurement update based on common
prior information obtained from the global system, which is
maintained by a central server. The central server performs
the global prediction and transfers the (potentially) reduced
prior state and covariance estimates to each respective agent
according to
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TABLE I
TOY EXAMPLE OF THE PROPOSED METHOD

H∗ H̄∗ y ȳ R R̄ RMSRE
1.0 0.3 0 0
2.0 2.0 0 0
0.3 1.0 0 0
0 0 2.0 1.0
0 0 1.0 3.0
0 0 0.3 0.5


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



−0.10
0.06
0.76
−0.72
−0.83
−0.90


−0.56

0.67
−0.29
−0.21

 0.5I6×6

 0.54 −0.48 0 0
−0.48 0.54 0 0

0 0 0.20 −0.10
0 0 −0.10 0.10

 4.37× 10−16

The updated reduced-state estimates and covariances are then
transferred back to the centralized server to perform a global
update without needing the local measurements, measurement
covariances or observation matrices.

III. EQUIVALENT MEASUREMENTS AND COVARIANCES

By utilizing the fact that the global state has a common
prior distribution and that the locally calculated estimates are
available, it is possible to calculate equivalent, but transformed,
measurements, measurement covariances and observation matri-
ces without compromising the integrity of the distributed agents.
If the calculated observation matrices H̄l

n are augmented with
zero-columns for the non-common state of the lth distributed
agent and the global state, we can form
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which are the equivalent measurement vector, noise covariance,
and the joint estimated observation matrix, respectively. These
can be used for an equivalent global KF update.

IV. RESULTS

In order to demonstrate the feasibility of the proposed
method, we show a toy example for one time step. Consider
the global system

xn =
1

100

[
82 8 0 0
8 75 7 0
0 7 68 6
0 0 6 61

]
xn−1+wn, wn ∼ N

(
0,

1

100

[
8 1 0 0
1 8 1 0
0 1 7 1
0 0 1 6

])
,

that contains 4 states, and is divided up into 2 subsystems, A
and B, each containing 2 substates of the global states.

A centralized server runs a Kalman prediction of the
global state, and transfers marginalizations of the global state
(4) to A and B. Subsystems A and B each measure their
respective states using a total of 3 observations each, with their
respective observations matrices HA and HB. For comparison,
a centralized KF is used to estimate the system, using the
global observation matrix

H∗ =

[
HA 0
0 HB

]
∈ R6×4. (5)

Table I presents the RMSRE [7] between the centralized
KF and the method. The results highlight the advantages of

the proposed method in terms of privacy. Neither the true
measurement, nor the measurement covariance, nor the number
of measurements are revealed at the server. The benefits in
terms of communication and server side computation are also
highlighted. If the number of measurements increase, the
calculated observation matrix H̄∗ will still be a I4×4.

V. CONCLUSIONS

The proposed method demonstrates near identical results to
the centralized KF in simulations, with the main differences
being in the order of magnitude of machine precision. The
proposed method allows for an analytically optimal linear
estimator for distributed systems of unequal states, which
has advantages over the centralized KF in terms of data
transfer, privacy and computational time, particularly when
the subsystems have a large number of measurements. Even if
the number of measurements far exceeds the number of states
at the local agent, the calculations done at the central server
assume that the number of measurements equals the number of
states. This can significantly reduce the dimensionality of the
matrix inversions at the centralized server. In addition to this,
since only the state estimates and covariance matrices are sent
back to the centralized server, the integrity of the distributed
agents is not compromised.
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