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I. INTRODUCTION

For implicit linear Model Predictive Control (MPC), the
main computational burden is to in real-time solve optimiza-
tion problems formulated as quadratic programs (QPs), to
produce control actions governing a system. These QPs can
be expressed as a multi-parametric quadratic program (mpQP)
(see e.g.[1]) given by
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subject to Ax ≤ b+Wθ
(1)

where the decision variable x ∈ Rn is related to the control
action. Moreover, the parameter θ ∈ Θ0 ⊆ Rp is related to the
state of the plant, the feasible set of the problem is defined
by A ∈ Rm×n, b ∈ Rm, and W ∈ Rm×p, and the objective
function is defined by f ∈ Rn, fθ ∈ Rn×p, and H ∈ Sn+.

When using implicit MPC in real time to control discrete-
time systems that are safety-critical, it is crucial to know the
worst-case execution time of QP solvers, as the availability
of scheduled stabilizing control actions might be required to
maintain stability and reach a certain system performance.

Algorithms that solve QPs with such guarantees have re-
cently been developed in [2] and [3]. Here, the main idea is
to perform an offline analysis and partition the parameter space
into regions that share the same sequence of solver states q,
i.e., the sequence of operations the optimization algorithm used
to reach the optimum x⋆(θ) as a function of θ. In addition,
the number of iterations k(θ) the optimization algorithm will
perform will also be given as a function of θ. [3]

Importantly, since the complexity certification investigates
a given parameter space, it is also possible for a user to
partition the parameter space before certification, and then
certify the resulting regions in the partition separately. This
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enables certification of the time-complexity of larger QP prob-
lems using high-performance computing (HPC). Specifically,
through parallelization, which is the focus of this paper.

II. PARALLEL CERTIFICATION STRATEGIES

Parallel computing is commonly used to solve partial dif-
ferential equations (PDEs) [4], and allows otherwise large
computations to be divided into smaller tasks. Such tasks
can be shared on multiple cores of a CPU, or similarly on
multiple CPUs, that run simultaneously to speed up execution
[4]. If these CPUs do not share memory, as is common in
distributed computing, then communication between CPUs
will have to be handled, e.g., by a message-passing architecture
MPA [4]. Distributed computing is often used for scalable
HPC, commonly called supercomputers [5].

Applying distributed computing to the certification problem,
the natural question that follows is how to perform the initial
partition of the parameter space. Here, multiple options can
be mentioned. Assuming the parameter space is given by
a p-dimensional hyperrectangle R = [l1, u1] × [l2, u2] ×
· · · × [ld, ud] ⊂ Rp, where each pair [lj , uj ] is the interval
along dimension j with lower and upper bound lj , uj ∈ R
respectively, one can

1) divide the parameter space into K ∈ N equally
sized sub(hyper)rectangles R1, R2, .., RK where R =⋃K

i=1 Ri. Here, a natural choice of K is (if possible)
the number of CPU cores available in the computation.

2) try to find an estimate of the true parameter-space
partition to be computed by the complexity certification
and partition the parameter space according to this.

3) use the true parameter partition, which can be useful as
a ground truth.

Thus, certification of the original optimization problem, i.e.
over the original parameter space Θ0, can be achieved by
distributing regions in the partitioned parameter space across
nodes—a user-defined collection of CPU cores—which certify
in parallel, and finally collecting the resulting iterations k(θ).

Interestingly, all of these approaches suffer from a common
issue, even for the true ”exact” parameter partition men-



tioned. Namely, a load-balancing problem, as certifying certain
regions of the parameter space inherently demands longer
computational time due to increased complexity within those
regions. This inefficiency can sometimes be severe for the
computation as a whole, as individual computational resources
might remain idle even though particularly complex regions
are yet to be certified by other active resources.

III. LOAD BALANCING

Two approaches with the potential to mitigate load-
balancing issues are presented in this section. One, which can
be viewed as a feedback approach, and a second, which can
be viewed as a feedforward approach.

A. Feedback using communication between nodes

In the case of an unbalanced initial parameter space par-
tition, the complexity certification algorithm mentioned in
Section I can be terminated early given that a user-defined
condition is true. An example of such a condition is if the
amount of certified regions Nmax exceeds a certain threshold
(see [6] Section V.A for details). If it holds true, the certifica-
tion process terminates giving the stacks F and S containing
tuples corresponding to regions in Θ0 that have been certified
and are yet to be certified, respectively.

If nodes available to the user are found to be idle during
certification on a specific node, here called the active node,
part of the stack S for this active node can be allocated to idle
nodes via a feedback law.

For example, a basic law could be to split the tuple S into
two tuples S1 and S2, where S1 is retained at the active node
and S2 is given to the idling nodes for further certification.
(The split, in the case of an uneven length of the tuple S, is
carried out so that the number of elements in S1 is greater
than S2.) The stack F retained by each node is concatenated
when the tasks of all nodes have terminated, giving the final
partition of the parameter space and the number of iterations
k(θ).

We note here that an MPA, as described in Section II,
is needed since distributed computations are of interest, and
nodes require knowledge of other idle nodes. In addition, a
means of receiving and sending unfinished regions S is also
needed. This communication is undesired, as it in general adds
computation time.

B. Feedforward by estimating a balanced partition of the
parameter space

An observation that can be made is that if the initial
partition mentioned in Section II is well balanced with respect
to the computation time for each node, then the need for
feedback and communication would be reduced, since the
problem of idle nodes would be less of an issue. Much akin
to how feed-forward is used in control.

As such, attempting to a priori estimate the true parameter
partition given by the complexity certification and using it as
an initial partition seems to be an attractive alternative to the
feedback approach. It is also of interest to accurately estimate

a complexity measure related to the effort of certification, i.e.,
information about how computationally challenging a given
region from the initial partition would be to certify.

An example of a complexity measure could be an estimate
of the number of iterations k̂(θ) of each region in the initial
partition. Another alternative is to estimate a complexity
density

d̂(θ) =
N̂reg(θ)k̂(θ)

V
(2)

where, for a region in the initial partition, N̂reg is an estimate
of the number of ”true” regions located therein and V is the
given p-dimensional volume.

For example, using Alternative 1 in Section II with K nodes,
a partition of the parameter space would then be balanced with
respect to the iterations if the number of iterations k̂(θ) in each
region is roughly equal.

As mentioned in Section II, parallel computing is commonly
used to solve PDEs and therefore it is of interest to investigate
methodologies in that field. One such example is [7], where
the load balancing problem is addressed using adaptive finite
element methods.

IV. ESTIMATING THE COMPLEXITY MEASURE

A direct method to obtain k̂(θ) is to evaluate, for each region
in the initial partition, the number of iterations executed by
Algorithm 4 in [8] when solving the mpQP in (1) for a given
θ within each region. A key advantage of this approach is that
this procedure can be performed in parallel.

Similarly, a lower bound for Nreg can be obtained from
k̂(θ) as the unique number of iterations observed in each
region in the initial partition. Note that this requires multiple
samples per region in the initial partition.

FUTURE WORK

Future work will involve a numerical analysis and a com-
parative evaluation of the methods presented in Section II-IV.
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