
A Network Perspective on Gradient Flow Equations for

Deep Linear Neural Networks

Joel Wendin and Claudio Altafini
Department of Electrical Engineering,

Linköping University, SE-58183 Linköping, Sweden

Deep learning has over the last decade proven to be a powerful method to solve
complex tasks in computer vision, natural language processing and chemistry. At the
same time, understanding of the theory behind these successes has been progressing
more slowly. Even though the training of deep neural networks is typically done via
simple first order optimization methods on highly non-convex objectives, bad local minima
are often avoided and the networks generalize to unseen data. A general difficulty in
understanding the training dynamics of neural networks is due to their nonlinear nature.
This work aims at investigating the recent developments in the study of deep linear
neural networks, which have been used as a simplified but analytically treatable proxy
for nonlinear neural networks. Deep linear networks have no activation functions and
hence lose the expressive power of their nonlinear counterparts, but they still retain some
interesting properties, such as the nonlinearity of the training dynamics, the non-convex
objective (loss function), and the overparameterization. They are also trained using the
same algorithm as nonlinear neural networks. Our contribution is to treat the network in
a graphical framework and to reformulate the system dynamics in terms of its adjacency
matrix, which simplifies and provides insight into the system properties.

A linear neural network f : Rdx → Rdy is a function parameterized by weight matrices
W1,...,Wh, Wj ∈ Rdj×dj−1 that define a linear map f(x; {Wj}) = Wh · · ·W1x. The
network connects the input to the output via h − 1 hidden layers of sizes d1, ..., dh−1

(Fig. 1(a)), and the (k, ℓ)th element of Wj defines the weight of the edge from the ℓth
node in the (j − 1)th layer to the kth node in the jth layer. We study how the network
learns these weights when trained on a linear regression task, i.e., minimizing a quadratic
objective. This objective can be elegantly formulated in terms of the network adjacency
matrix, A, and is a p.s.d. Lyapunov function, L(A).

Neural networks are commonly trained using gradient descent methods, where the
parameters of the model are updated by taking a step in the opposite direction of the
gradient of the objective: A(t+1) = A(t)−η∇AL(A(t)). In deep linear networks, we can
study these dynamics in continuous time by letting the step size shrink to zero, obtaining
the so-called gradient flow equations Ȧ = −∇AL [4]. For shallow networks, h = 1, L is
convex, the dynamics are linear, and trajectories always converge to the unique global
optimum. As soon as h > 1, L is non-convex, the dynamics are nonlinear, and there
are infinitely many (possibly unbounded) optimal solutions. However, despite this, deep
linear networks are rather well-behaved. One reason is that they obey a set of conservation
laws which ensure that any trajectory is bounded and converges to a critical point of the
Lyapunov derivative L̇ = ⟨Ȧ,∇AL⟩F = −∥Ȧ∥2F , and thus to a critical point of Ȧ [2].

Another interesting property of deep linear networks is that all local minima are global

1



minima, while all other critical points are saddles [3]. In addition to having provided a
parameterization of all critical points of Ȧ, the work [1] investigated the second order
nature of saddle points and derived a rank condition on the weight matrices to distinguish
between strict and non-strict saddles of Ȧ. Non-strict saddles are characterized by the
Hessian lacking negative eigenvalues, and trajectories can be significantly slowed down
when passing close by. A sufficient condition for a saddle A∗ to be non-strict is that three
of its weight matrices have minimal rank r = rank((A∗)h), and that the input-output
map is the optimal rank-r solution: L(A∗) = minA,rank(Ah)=r L(A).

Although a deep linear network almost always converges to a global optimum, quali-
tatively it behaves differently depending on whether it is initialized near or far away from
the origin. For initializations close enough to the origin, the network learns the data
modes sequentially from largest to smallest, which is visible as sudden decreases in the
objective L (Fig. 1(b)). We can understand the phases where L is almost constant as
an effect of the trajectory passing close by non-strict saddle points. In contrast, when
initializing far away from the origin (Fig. 1(c)) the system avoids the non-strict saddles:
convergence is faster, and all modes are learnt simultaneously.

W1

dx

W2 W3 W4
W5

d1 d2 d3 d4
dy

(a)
(b) (c)

Figure 1: (a) A linear neural network (h = 5, dx = 11, di = 6, dy = 4); its corresponding
loss function L and singular values of A during training when initializing (b) near the
origin; and (c) far from the origin.

References

[1] E. M. Achour, F. Malgouyres, and S. Gerchinovitz. The loss landscape of deep linear neural networks:
a second-order analysis. Journal of Machine Learning Research, 25(242):1–76, 2024.

[2] Y. Chitour, Z. Liao, and R. Couillet. A geometric approach of gradient descent algorithms in linear
neural networks. Mathematical Control and Related Fields, 13(3):918–945, 2023.

[3] K. Kawaguchi. Deep learning without poor local minima. Advances in neural information processing
systems, 2016.

[4] A. Saxe, J. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning in
deep linear neural networks. International Conference on Learning Represenatations, 2014.

2


