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Compositional design for time-varying and nonlinear coordination
Jonas Hansson and Emma Tegling

Abstract—This work addresses the design of high-order con-
sensus protocols for multi-agent coordination. While first-order
consensus strategies are well understood—with robustness guar-
antees under time delays, time-varying weights, and nonlinear-
ities such as saturation—the theoretical foundations for high-
order coordination remain limited. We propose a compositional
control framework in which high-order consensus is achieved
by cascading stable first-order consensus protocols. Under mild
assumptions, we show that the resulting system inherits the
stability from its components. The versatility of the design is
illustrated through an example inspired by vehicular formation
control under time-varying connectivity.

I. INTRODUCTION

The coordination of multi-agent systems has a long history,
dating back to early works such as [1]. A modern theory of
consensus was developed in the early 2000s through pioneer-
ing contributions like [2]–[5].

While linear time-invariant consensus protocols are well
understood, the theory of high-order coordination remains
comparatively underdeveloped. One of the simplest models
capable of achieving high-order consensus is

x
(n)
i = ui(x, t),

where each control input ui relies solely on local and relative
information. A prototypical high-order consensus protocol was
proposed in [6]:

x(n) = −rn−1Lx
(n−1) − rn−2Lx

(n−2) − · · · − r0Lx,

which can achieve coordination of position and the first n− 1
derivatives, provided that the gains rk are appropriately tuned.
However, as shown in [7], such protocols may suffer from
scale fragility: for certain network topologies, it is not possible
to choose fixed gains rk that ensure stability without precise
knowledge of the Laplacian spectrum. This highlights the need
for more scalable approaches to high-order coordination.

In this work, we propose a novel control design that achieves
high-order consensus through a cascade of simpler coordi-
nation mechanisms. Our design parameterizes a broad class
of closed-loop systems that, under suitable conditions, ensure
high-order coordination. Importantly, the resulting controllers
rely only on local and relative measurements.

We define the compositional consensus system as(
d

dt
+ Ln

)
◦ · · · ◦

(
d

dt
+ L1

)
(x) = 0, (1)

where each Lk is a (possibly nonlinear and time-varying)
Laplacian-like operator. This structure enables a modular
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analysis: stability of the full system follows from the prop-
erties of its first-order components. The linear version of this
framework, which we call the serial consensus, has already
demonstrated promising performance in [8], [9].

II. PROBLEM SETUP

We consider a network of N identical nth-order integrators
governed by

x(n)(t) = u(x, t),

where x(t) ∈ RN and u(x, t) ∈ RN . Our goal is to achieve
high-order coordination using only local and relative feedback,
as formalized below.

Definition 1 (nth-order consensus). A solution x(t) ∈ RN

achieves nth-order consensus if

lim
t→∞

|x(k)
i (t)− x

(k)
j (t)| = 0, ∀i ̸= j, k = 0, . . . , n− 1.

To this end, we construct the controller using a sequence of
first-order coordination protocols of the form

ż = −Lk(z, t),

where each Lk : RN ×R+ 7→ RN may be nonlinear and time-
varying. These operators are composed to form the control
input

u(x, t) = x(n) −
(

d

dt
+ Ln

)
◦ · · · ◦

(
d

dt
+ L1

)
(x). (2)

The composition is taken with respect to the first argument
only, i.e.,

(L2 ◦ L1)(x) := L2(L1(x, t), t).

Our design enforces relative feedback, a natural constraint
in formation control and distributed systems.

Assumption 1 (Relative feedback). Each coordination proto-
col Lk satisfies

Lk(z + 1a(t), t) = Lk(z, t), ∀z ∈ RN , a(t) ∈ R, and t ≥ 0.

This ensures invariance under translation and promotes
consensus-seeking behavior.

To analyze the stability of (2), we impose the following
technical assumptions on Lk for k ≤ n− 1.

Assumption 2 (Lipschitz and piecewise continuity). Each
Lk(z, t) is Lipschitz in z with a uniform constant (independent
of t) and is piecewise continuous in t for each fixed z.

Assumption 3 (Local ISS). If ∥w(t)∥ ≤ Mk for all t ≥ T0,
then the perturbed system ż = Lk(z, t)+w(t) is input-to-state
stable (ISS) with respect to a seminorm |||·|||, i.e.,

|||z(t)||| ≤ βk(|||z(T0)|||, t) + γk

(
sup
t≥T0

∥w(t)∥
)
,
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for some βk ∈ KL, γk ∈ K, where |||z||| = 0 ⇐⇒ z ∈
span(1).

Assumption 4 (Smoothness). Each Lk ∈ Cn−1−k satisfies

∥ dj

dtj
Lk(z, t)∥ ≤ αk,j

(
max
0≤i≤j

∥z(i)∥
)
,

for some αk,j ∈ K, all j ≤ n− k − 1, and all t ≥ 0.

For further discussion of these assumptions and their impli-
cations, we refer the reader to the full article [10].

III. MAIN RESULTS

The following result establishes that the composition of
first-order consensus protocols, as in (1), yields asymptotic
nth-order consensus.

Theorem 1. Let each operator Lk satisfy the relative feedback
condition in Assumption 1, and assume that the unforced
system

żk = Lk(zk, t)

admits a unique solution for any initial condition zk(0), with

lim
t→∞

∥zk(t)− 1ak(t)∥ = 0,

for some scalar function ak(t). Further assume that each Lk,
for k = 1, . . . , n − 1, satisfies Assumptions 2–4. Then the
compositional consensus system (1) admits a unique solution
x(t), and this solution achieves nth-order consensus.

The proof of this result is provided in [10].

IV. CASE STUDY

First-order consensus protocols possess several desirable
properties. For example, [5] shows that the system

ż = −L(t)z,

achieves exponential consensus if the time-varying graph L(t)
is sufficiently connected over time. If we choose Lk(z, t) =
Lk(t)z, and ensure that each Lk(t) is smooth in accordance
with Assumption 4, the conditions of Theorem 1 are easily
verified.

Example 1. Consider a second-order compositional consen-
sus protocol where L2(z, t) = L1(z, t) = D(t)L, with L a
fixed directed Laplacian and D(t) a continuous, nonnegative,
bounded diagonal matrix. If L contains a directed spanning
tree and there exist constants T > 0, δ > 0 such that∫ t+T

t

Di,i(τ) dτ > δ ∀t, and i

then x(t) achieves second-order consensus.
In the simulation shown in Fig. 1, L represents a directed

path graph with a leader, and

Di,i(t) = max {sin(ωit+ ϕi), 0} ,

where ωi and ϕi are randomly generated. The agents imple-
ment a compositional consensus control law

u(x, t) = −2D(t)Lẋ−
(
D(t) + Ḋ(t)

)
L(x− dref),

Fig. 1: Second-order compositional consensus under a time-varying
coordination protocol. Vehicles return to the desired formation despite
initial standstill and intermittent disconnection.

where dref denotes the desired inter-agent spacing in the for-
mation. This allows each agent to maintain a fixed relative dis-
tance from its predecessor while adapting to the time-varying
coordination gains. The system successfully achieves second-
order consensus, illustrating robustness to time-varying and
intermittently disconnected communication.

Further examples, including coordination under input satu-
ration L(z, t) = sat(Lz) and time-delayed GPS feedback, are
provided in the full article [10].

V. CONCLUSIONS

This work introduced the compositional consensus system,
a flexible framework for designing high-order coordination
protocols using cascades of first-order consensus operators.
This structure enables the construction of nonlinear, time-
varying, and time-delayed protocols that achieve consensus
under mild connectivity assumptions.

By reducing the analysis of complex high-order systems
to modular components, the approach provides both theoret-
ical insight and practical scalability. Future work includes
extensions to heterogeneous agent dynamics, experimental
validation, and distributed observer design for reduced com-
munication overhead.
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