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Abstract—Effective therapeutic neurostimulation requires pre-
dictive models that can reliably map neural activity responses to
specific stimuli. While recent advances in closed-loop neurostim-
ulation devices show promise for treating neurological disorders,
most modeling approaches neglect the crucial relationship be-
tween stimulation input and neural response.

A fundamental test of model predictive capability remains
unaddressed: given baseline electroencephalographic (EEG) data
and subsequent neural responses to stimulation, can we accu-
rately reconstruct information about the injected stimuli? Fur-
thermore, can such reconstruction remain valid across different
stimulation parameters and electrode configurations, reflecting
the diverse electrode placements required in clinical practice?

In this paper, we demonstrate that input reconstruction
is achievable using discrete-time linear fractional-order dy-
namical networks (DTLFON), which capture the rich tempo-
ral dependencies characteristic of neural systems. We present
a novel minimization-minimization algorithm that generalizes
expectation-maximization principles to learn both system param-
eters and unknown inputs.

Our approach differs from previous methods by explicitly
incorporating a learning phase to establish baseline dynamics be-
fore stimulation, allowing for more reliable parameter estimation
while accounting for the quasi-stationary nature of stimulation
electrode configurations.

I. PROBLEM FORMULATION AND METHODOLOGY

In neural recordings, we observe voltage measurements
x[k] ∈ Rn at n ∈ N different spatial locations through EEG
readings at discrete time steps k ∈ N, reflecting both intrinsic
brain dynamics and responses to external stimuli u[k] ∈ Rp

with p ∈ N.
We model the input-output relationship using a discrete-time

linear fractional-order dynamical network (DTLFON):

∆αx[k + 1] = Ax[k] +Bu[k] + w[k], (1)

where A ∈ Rn×n captures spatial coupling between EEG
electrode readings, B ∈ Rn×p describes how inputs influence
these readings, w[k] ∈ Rn represents process noise, and ∆α

represents a fractional difference operator of order α ∈ Rn.
This operator captures different time-scales of neural ac-

tivity through coefficients ψ(αi, j), where ψ(αi, j) = Γ(j −
αi)/[Γ(−αi)Γ(j+1)] and Γ(·) is the Gamma function. These
coefficients control how strongly past states influence current
dynamics, with higher αi values corresponding to stronger
memory effects, while lower values indicate more rapid decay
of historical influence.

Unlike conventional data-driven approaches that focus
solely on predicting neural activity patterns, our research

addresses the inverse problem: can we accurately reconstruct
both the unknown input sequence {u[k]}T−1

k=0 and the underly-
ing network structure that maps these inputs to the observed
neural responses?

This inverse problem presents several key challenges: (i) the
nonlinear relationship between measurements and unknown
parameters, (ii) measurement noise and system uncertainties,
(iii) long-memory effects captured by the fractional-order
dynamics, and (iv) coupling between spatial and temporal
dynamics in the network. Additionally, the problem is in-
herently ill-posed, as multiple combinations of inputs and
network parameters could potentially explain the observed
measurements.

To solve this inverse problem, we develop a novel
minimization-minimization (min-min) algorithm that alter-
nates between estimating system parameters and reconstruct-
ing unknown inputs. The algorithm consists of two comple-
mentary optimization stages:

• Stage 1: Gradient Optimization for Temporal-Spatial
Parameters - During this phase, we assume no external
inputs (u[k] = 0) and estimate system parameters α and
A by implementing gradient descent optimization that
minimizes prediction error. This stage begins by initializ-
ing fractional orders α(0)

i = 0.5 for all state variables with
i ∈ {1, 2, . . . , n}. For each iteration l ∈ N, we compute
fractional derivatives zi[k] =

∑J−1
j=0 ψ(α

(l)
i , j)x[k+1−j]

with a truncation term J ∈ N that limits the infinite sum.
We then solve for the optimal coupling matrix A(l) using
least squares optimization: A(l) = argminA ∥Z−AX∥2,
where Z ∈ Rn×(k+1) and X ∈ Rn×(k+1) are matrices of
stacked derivatives and states, respectively. The fractional
orders are updated through quasi-Newton optimization:
α(l+1) = α(l)−η∇αe

(l), with η ∈ R+ being the learning
rate and e(l) ∈ R the estimation error. This process
continues until convergence.

• Stage 2: Input Reconstruction - After establishing
baseline dynamics, we reconstruct both the input coupling
matrix B and unknown input sequence u[k] through
alternating minimization steps. We compute residuals
r[k] = z[k] − Ax[k] ∈ Rn, which represent the part
of the dynamics unexplained by the network’s intrinsic
behavior.
Given the current estimate B(l) ∈ Rn×p, we reconstruct
the input sequence û = argminu ∥R − B(l)u∥2 (first



minimization), where R ∈ Rn×(k+1) is the matrix of
stacked residuals. Then, we update the coupling ma-
trix B(l+1) = [b

(l+1)
1 , ..., b

(l+1)
n ]T , where each element

b
(l+1)
i = argminb ∥Ri−bû∥2 (second minimization) with
Ri ∈ R1×(k+1) denoting the i-th row of the residual
matrix R.
The algorithm alternates between these steps until conver-
gence, addressing the inherently ill-posed nature of this
inverse problem.

II. EXPERIMENTAL VALIDATION AND RESULTS

We validated our approach through both numerical sim-
ulations with synthetic data and analyses of real clinical
recordings. This two-pronged strategy allowed us to verify
algorithm performance under controlled conditions, assess
robustness to realistic noise and variability, test generalizability
across different stimulation patterns, and compare performance
with traditional linear time-invariant (LTI) approaches.

We evaluated reconstruction quality using multiple com-
plementary performance indicators, each capturing different
aspects of reconstruction fidelity. Dynamic Time Warping
(DTW) distance ∈ R+ was used to evaluate temporal align-
ment between true and reconstructed signals, with values
approaching zero indicating optimal alignment. Relationship
strength was assessed through Pearson correlation coefficient
(pCorr) ∈ [−1, 1] for linear relationships and Spearman cor-
relation coefficient (sCorr) ∈ [−1, 1] for monotonic relation-
ships, with values closer to 1 indicating optimal reconstruction.

Signal-to-Noise Ratio (SNR) ∈ R measured reconstruction
quality in terms of signal power in decibels (dB), with higher
values (above 20dB) indicating excellent quality. Normalized
Root Mean Square Error (NRMSE) ∈ R+ quantified re-
construction accuracy independent of signal magnitude, with
values below 0.1 indicating good reconstruction.

Finally, the coefficient of determination (R2) ∈ (−∞, 1]
assessed how well the reconstructed signal captured the dy-
namic range of the true input, with values above 0.8 suggesting
excellent reconstruction quality.

In simulations using a synthetic four-state system, our
DTLFON-based method consistently outperformed the LTI
approach across multiple input types (sinusoidal, square wave,
and biphasic pulse) and noise levels. Even under high noise
conditions (σ = 0.64 with σ ∈ R+), the DTLFON approach
maintained strong performance (Pearson correlation = 0.98,
SNR = 7.9 dB, R2 = 0.84) while the LTI method degraded
significantly (Pearson correlation = 0.06, SNR = -6.3 dB,
R2 = −3.30).

For clinical validation, we used data from Mikulan et al. [2]
featuring simultaneous recordings of intracerebral electrical
stimulation and high-density EEG from epilepsy patients with
approximately 110 valid trials recorded using a 256-channel
HD-EEG system. Stimulation consisted of controlled biphasic
pulses delivered through intracerebral electrodes at 14 different
anatomical locations with intensities ranging from 0.1 to 5 mA.

Our approach demonstrated remarkable consistency across
different stimulation locations (K13-14, N2-3, S1-2, S3-4) and

intensities (1mA to 5mA). Notably, the method showed par-
ticular robustness in handling different array dimensionalities
(n ∈ {1, 2, 4, 8}) while maintaining reconstruction quality, a
critical feature for practical clinical deployment.

The superior performance of our DTLFON approach com-
pared to traditional LTI methods was particularly evident in
high-noise conditions typical of clinical settings. This advan-
tage stems from the DTLFON method’s ability to capture
the complex temporal dependencies inherent in neural signals,
providing better noise rejection capabilities and more accurate
reproduction of the signal’s dynamic range. The most sig-
nificant performance differences were observed in the SNR
and R2 metrics, which specifically measure signal quality and
variance explained, respectively.

For parameter estimation accuracy assessment, we used
NRMSE between true and estimated values for system param-
eters (A, B, α). Our method achieved near-perfect parameter
reconstruction under low noise conditions, with only modest
degradation as noise increased. This exceptional parameter es-
timation capability underpins the superior input reconstruction
performance demonstrated in our evaluation metrics.

III. CONCLUSION

Our research addresses a fundamental challenge in ther-
apeutic neurostimulation: reliably predicting and validating
neural responses to stimulation inputs. We demonstrated that
discrete-time linear fractional-order networks can effectively
reconstruct stimulation patterns from EEG measurements, pro-
viding a crucial step toward predictive model validation in
clinical applications [1]. These results establish a promising
foundation for advancing personalized therapeutic interven-
tions, where accurate reconstruction of neural responses to
stimulation could enable more precise and patient-specific
treatment strategies.

The fractional-order approach [3], [4] provides significant
advantages over traditional methods, especially in handling
the complex temporal dependencies and noise characteristics
typical of neural systems. As closed-loop neurostimulation
devices continue to evolve, our method offers a valuable
tool for both testing predictive model efficacy and optimizing
stimulation parameters for individual patients.
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