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Abstract

The increasing reliance on numerical methods for controlling dynamical systems and training machine learning models
underscores the need to devise algorithms that efficiently navigate complex optimization landscapes. Classical gradient descent
methods offer strong theoretical worst-case guarantees for convex problems; however, they demand meticulous hyperparameter
tuning for non-convex ones. The emerging paradigm of learning to optimize (L2O) automates the discovery of algorithms
with optimized performance leveraging learning models and data – yet, it lacks a theoretical framework to analyze the
convergence of the learned algorithms. In this extended abstract, we present results from [1] and we discuss related open research
directions. Specifically, we present an unconstrained parametrization of all convergent algorithms for smooth non-convex
objective functions. Notably, our framework is directly compatible with automatic differentiation tools, ensuring convergence
by design while learning to optimize.

I. INTRODUCTION

Traditionally, optimization algorithms have been carefully designed by experts through case-by-case analyses of their
convergence behavior when applied to problems with specific properties, such as smoothness and convexity. Interpreting
iterative algorithms as evolving dynamical systems, [2] recently proposed an analysis and synthesis framework built on the
notion of integral quadratic constraints from robust control theory, leading to the design of new methods with optimized
convergence rates. To tackle non-convex optimization landscapes, the emerging paradigm of learning to optimize (L2O)
embraces machine learning to automate the design of algorithms based on their performance on a set of training problems
[3]. Despite outstanding empirical performance, however, learned optimizers generally lack convergence guarantees and
require early-stopping or conservative fall-back mechanisms, raising concerns about reliability and generalization. In this
extended abstract, we present the complete characterization of convergent algorithms for smooth non-convex objectives
established in [1], which enables learning over all and only the set of convergent algorithms.

II. PROBLEM FORMULATION

We focus on optimization problems of the form x⋆ = argminx∈Rd f(x) where f(·) is bounded from below and has
β-Lipschitz gradients, that is, |∇f(x)−∇f(y)| ≤ β|x− y| for all x, y ∈ Rd. We denote the set of such β-smooth functions
by Sβ . We describe an iterative optimization algorithm via the recursion

xt+1 = xt + ut = xt + πt(f, xt:0) , t ∈ N , (1)

where x0 ∈ Rd is the initial guess, xt ∈ Rd is the candidate solution vector after t iterations, and ut = πt(f, xt:0) ∈ Rd is the
algorithm update rule. We can write (1) compactly as zx = x+π(f,x)+ zδx0 , where x = (x0, x1, . . .), zx = (x1, x2, . . .),
δx0 = (x0, 0, . . .) ∈ ℓ2, and π(f, ·) = (π0(f, x0), π1(f, x1:0), . . .) is a causal operator for any objective function f(·).

Definition 1: Consider the iteration (1). An update rule π(f,x) is square-sum convergent for f if for any x0 ∈ Rd

∥π(f,x)∥2 < ∞ , ∥∇f(x)∥2 < ∞ . (2)
We write π(f,x) ∈ Σ(f) if π(f,x) is square-sum convergent for f(·). Given distributions F and X0 over functions in

Sβ and initial solutions x0 ∈ Rd, respectively, the problem of designing an optimal convergent algorithm becomes

min
π

Ef∼F,x0∼X0
[MetaLoss(f,x)] (3a)

subject to (1) , π(f,x) ∈ Σ(f), ∀f ∈ Sβ , (3b)

where, as suggested in [3], one can choose MetaLoss(f,x) =
∑T

t=0 αt|∇f(xt)|2 + γtf(xt), with αt ≥ 0 and γt ≥ 0, to
strike a balance between a rapid convergence to a stationary point and the quality of the corresponding solution.

III. LEARNING OVER ALL CONVERGENT ALGORITHMS

We now characterize update rules that converge according to Definition 1, and describe how to learn over them. We start
by proving that if we perturb standard gradient descent with an ℓ2 “enhancement” term – designed, e.g., to escape a bad
local minimum or a saddle point – we preserve square-sum convergence to a critical point of f .

Lemma 1: For any v ∈ ℓ2 and any 0 < η < β−1, the update rule given by

π(f,x) = −η∇f(x) + v ∈ Σ(f), ∀f ∈ Sβ . (4)
The class of algorithms in the form (4) suggests a useful separation of roles; a gradient descent update can be used to

ensure convergence, while an enhancement term v ∈ ℓ2 can be learned to improve the algorithm performance. Nonetheless,
a crucial question regarding the conservatism of searching over v ∈ ℓ2 in (4) remains: Can any convergent algorithm
complying with (3b) be written as the sum of a gradient-based update and an enhancement signal v ∈ ℓ2 as per (4)?



In what follows, we answer in the affirmative by studying the closed-loop mappings induced by an update rule π(f,x).
Definition 2: For any update rule π(f,x), the mapping (f, δx0)→(x,u,∇f(x)) is denoted as the closed-loop mapping

induced by u = π(f,x).
Lemma 2: For any x0 ∈ Rd and f ∈ Sβ , let the closed-loop mapping induced by a policy u = π(f,x) satisfying (3b) be

(f, δx0) → (xπ,uπ,∇f(xπ)) . (5)

Then, there exists V ∈ L2 such that (f, δx0) → (x,−η∇f(x) +V(δx0),∇f(x)) is equivalent to (5).
The completeness property stated above is key, as it implies that (4) encompasses all sum-square convergent algorithms

– including those that globally minimize (3a). Together with Lemma 1, Lemma 2 leads to our main result.
Theorem 1: If 0 < η < β−1, the meta-optimization problem (3) is equivalent to

min
V∈L2

Ef∼F,x0∼X0 [MetaLoss(f,x)] (6a)

subject to zx = x− η∇f(x) +V(δx0) + zδx0 . (6b)
A few comments are in order. First, any possibly suboptimal solution V ∈ L2 to (6) yields a converging algorithm

complying with (3b). Second, every converging algorithm complying with (3b) is recovered by appropriately choosing
V ∈ L2 with no conservatism. Third, as the convergence constraint (3b) simplifies to V ∈ L2, we can use finite-dimensional
approximations of operators in L2 available in the literature to translate (6) into the unconstrained optimization problem of
learning the best parameter θ ∈ RD via automatic differentiation tools.

Remark 1: While Theorem 1 proves that designing an update rule that solely reacts to x0 ∼ X0 is sufficient for achieving
meta-optimal behaviors, introducing explicit dependence of V on additional input features could significantly improve how
effectively we navigate the meta-optimization landscape. For instance, by defining ω = Ω(x,∇f(x), f(x)) and z = Z(δx0),
where Ω : ℓ → ℓ and Z ∈ L2 are operators to be freely designed, a simple approach to preserve sum-square convergence
while introducing input features is to consider v ∈ ℓ2 parametrized as vt = |zt||ωt|−1ωt.

IV. EXPERIMENTS

In Figure 1, we compare the performance of our ConvergentL2O algorithm and that of classical fine-tuned optimizers
in training a neural network for image classification on the MNIST dataset. Remarkably, despite being trained to optimize
the parameters of a neural network with tanh, our algorithm also generalizes to structurally different activation functions.
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(a) Activation function: tanh.
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(b) Activation function: sigmoid.
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(c) Activation function: ReLU.

Fig. 1. Training curves of learned and hand-crafted optimizers; shaded areas and solid lines denote standard deviations and mean values, respectively.

V. CONCLUSION

We have presented a methodology for learning over all convergent update rules for smooth non-convex optimization. By
synergizing systems theory with the emerging L2O paradigm, we aimed to close the gap between theory-based algorithm
design and example-driven approaches that are the hallmark of machine learning. Building on the proposed control-theoretic
perspective we have adopted and on the formalism of fixed-point operators, our ongoing work [4] studies how to enhance
the performance of legacy convex optimization algorithms, such as Nesterov’s accelerated gradient method, on a class of
relevant problems, while preserving stronger linear convergence guarantees. We foresee that the formalism of fixed-point
operators will also play a central role in extending our approach to game-theoretic settings, where agents aim to rapidly
converge to equilibria that appropriately balance fairness and social welfare. Further avenues for future research include
conducting a formal generalization analysis and studying online and constrained optimization scenarios.
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