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Safe Output Feedback Improvement with Baselines
Yibo Wang, Ruoqi Zhang, Per Mattsson

Abstract—It is important to account for the presence of
uncertainties when designing data-driven controllers. Min-max
optimization is an often used approach for addressing this
challenge in the way of minimizing a given design criterion
over the set of worst-case uncertainties. Although this algorithm
guarantees the safety of the system, the resulting control laws
can be overly conservative. In order to mitigate this issue, a
baseline regret cost is incorporated into the objective function so
that the controller performance can be improved within a safe
region. The design consists of two steps. First, an uncertainty set
is constructed via system identification based on finite impulse
response (FIR) models. Then, a control design criterion based
on model reference control is used. The numerical examples
show that the inclusion of baseline regret indeed improves the
performance of the resulting controllers, and that the use of
regularization techniques in the FIR-modeling can be beneficial.

I. INTRODUCTION

System uncertainties is a significant concern, especially in
a population of dynamical systems within the context of

data-driven control. In the context of mass production, for
instance, the same controller is typically used for all produced
units. Consequently, it is crucial to design a controller that is
sufficiently robust to handle a wide range of scenarios, such
as varying environmental conditions and small perturbations.
However, such a robust controller may be overly conserva-
tive. To address this issue, while maintaining the safety, [1]
proposed an approach that starts from the a robust baseline
controller and then improves this controller in a data-driven
manner.

A. Problem Formulation
The problem is based on a general stable discrete-time linear

systems,
yt = G◦(q)ut + vt, (1)

where ut is the input, yt is the output and vt is white noise
with zero mean and variance σ2. G◦(q) is an unknown transfer
operator and q−1 is the backward shift operator, q−1ut =
ut−1. The aim is to design a linear output feedback controller,
ut = C(q) (rt − yt), for tracking a given reference signal rt,
such that some performance criterion J is minimized.

B. Baseline Regret Optimization
Before introducing baseline regret optimization, one com-

monly used criteria for finding optimal controllers, known as
min-max, is given by,

C ∈ argmin
C∈C

max
G∈G

J(C,G), (2)
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where C is the set of controllers considered, and G describes
possible variations in the true system.

It is widely used due to its robust stabilization properties
for uncertain systems [2], [3]. However, the resulting control
policy can be very conservative, e.g., takes longer time to reach
the final state, particularly when the uncertainty set G is large.
Inspired by the developments in the reinforcement learning
literature, where safe policy improvement is delineated by
minimizing the negative regret with respect to the baseline
policy over certain processes [4], the following baseline regret
criterion equation is proposed,

C ∈ argmin
C∈C

max
G∈G

J(C,G)− J (Cb, G) . (3)

This strategy ensures that the resulting controller is an im-
provement over the baseline Cb. The corresponding theoretical
proof can be found in Appendix A.

It is then critical to define a set of uncertainties G and a
corresponding set of feasible controllers C. The least squares
identification approach is first employed to estimate finite im-
pulse response (FIR) models that characterize the uncertainty
set, followed by the construction of a well-defined controller
set. To formulate a convex optimization problem with respect
to the controller C, a model reference criterion is utilized,
where the objective is to find a controller C such that the
closed-loop system resembles a reference model W (q) as close
as possible.

Furthermore, the scenario approach [5] is introduced in
[1] to tackle the issue of the uncountable uncertainty set G,
allowing the problem to be simplified by drawing only a finite
number of samples from the set G.

C. Numerical Example
To evaluate the performance of the proposed strategy in

comparison to the min-max benchmark, a numerical example
with the use of a proportional controller is studied. The
reference model is chosen so that a proportional controller
with gain 0.5 is optimal for the true system.

The simulation results indicate that the traditional min-max
optimization yields a relatively conservative controller under
high uncertainty, with a gain of approximately 0.13, as shown
in the left plot of Figure 1. In contrast, when the baseline regret
cost is incorporated, the final controller increases to 0.25,
which is closer to the desired reference value, as illustrated
in the right plot of Figure 1. Moreover, as the size of training
data increases, the uncertainty set accordingly shrinks, and
the gap between 0.5 and optimized controllers become smaller
regardless of the selected baseline controller. Nevertheless, the
results obtained with the baseline regret criterion remain more
aggressive than those using original min-max formulation
within a safe region. The corresponding figure is not included
here in order to conserve space.
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Fig. 1. Controller gain under different performance criteria. The left plot
illustrates the result using the min-max criterion in (2), while the right plot
shows the result using the proposed baseline regret criterion in (3). The black
dashed line indicates the worst-case cost under model uncertainty (represented
by shaded area), and the dot marks the solution. The blue dashed line denotes
the baseline gain, and the red dashed line represents the optimal gain for the
unknown system Go.

II. BENEFIT OF REGULARIZATION

The approach of baseline regret has demonstrated strong
potential to improve the controller performance while main-
taining safety, as discussed in the previous section. Nev-
ertheless, there remains room for further enhancement in
terms of robustness. One key limitation is that, even with
the use of the scenario approach, the sampled distribution
does not sufficiently capture the ground-truth system. This is
possibly caused by the fact that the estimated covariance is
not sufficiently large to capture the true system. The rest of
this section studies a potential solution to this challenge.

A. Bayesian Regularization

To address the problem that the sampled distribution fails
to include the criterion curve of the true system, we smooth
the result of system identification step by embedding a regu-
larization term. Several methods have been proposed for this
purpose [6], [7]. In particular, [6] suggested a Bayesian kernel-
based approach for linear controller design, which we adopt
and integrate into the proposed control framework.

By treating the parameters as stochastic and introducing
a prior for regularization, a Bayesian approach is applied to
enhance the smoothness of impulse responses in FIR models.
The problem now becomes,

ĝ = argmin
g

∥Y − Φg∥2 + σ2

λ
gTK−1

ij g,

where g is the true impulse response, ĝ is its estimate, Φ and Y
contain the input and output data, respectively, λ is a positive
scalar, K is a regularization matrix defined by the class of
the stable spline kernels. Additionally, the prior covariance is
given by Σ = λK, and the first-order stable spline kernel,

Kij := αmax(i,j), 0 ≤ α < 1, (4)

is used in this study. Note that both λ and α can be tuned
based on specific requirement. The former one determines the

weight of the penalty term, while the latter hyperparameter
controls the rate at which the impulse response decays to
zero. The resulting estimated impulse response, along with the
corresponding posterior covariance, are therefore given by,

ĝ =

(
ΦTΦ+

σ2
v

λ
K−1

)−1

ΦTY,

Σ̂ = σ2

(
ΦTΦ+

σ2
v

λ

2

K−1

)−1

.

(5)

Based on the estimated plant models and uncertainties
obtained via (5), the subsequent steps involve sampling a finite
set of impulse responses and optimizing the controller using
the proposed baseline-regret criterion.

In terms of the final optimal controller, the solutions com-
puted with the regularization technique outperform the result
of the original formulation. This conclusion is drawn by
noticing that the value of the final optimal controller is closer
the desired control gain used in the reference model. This
improvement is particularly evident when the high uncertainty
exists. Moreover, the proposed baseline regret cost introduces
flexibility in the final controller design by allowing adjustment
of the baseline controller value. This ensures that the resulting
controller not only improves performance but can also be
tailored to specific application requirements. To be more
specific, when a more aggressive baseline gain is selected, the
resulting gain exceeds the reference gain within a reasonable
region.

APPENDIX A
PROOF OF PERFORMANCE GUARANTEE FOR BASELINE

REGRET CRITERION

Proposition 1: If G◦ ∈ G, and the solution to (3) is Ĉ∗,
then J

(
Ĉ∗, G◦

)
≤ J (Cb, G◦).

Proof: If the true system G◦ ∈ G, it can be guaran-
teed that J

(
Ĉ∗, G◦

)
− J (Cb, G◦) ≤ maxG∈G J

(
Ĉ∗, G

)
−

J (Cb, G) ≤ J (Cb, G)− J (Cb, G) = 0
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