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e-mail: firstname.lastname@liu.se
† School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

e-mail: skog@kth.se

I. INTRODUCTION

This work deals with methods of joint filtering and system
identification, by means of Gaussian process-augmented state
space models (GPASSM). These models are a class of grey-
box models which combine a prior physics-based model of a
dynamical system with a learned model of unknown dynamics
or inputs. The unknown part of the system is modeled by
a Gaussian process which is trained on estimation data,
becoming more informative with repeated exposure of system
dynamics. This allows the user to pre-define an approximate
model of a system which iteratively becomes more accurate,
enabling enhanced filtering performance compared to purely
model-based methods, while providing a guaranteed perfor-
mance level even in regions with sparse or non-existent data.
Using Gaussian processes (GP:s) for the learned part of the
dynamics, instead of black-box models such as deep neural
networks which in recent years have been massively successful
in many domains, is motivated by the explicit treatment of
model uncertainty in GP:s. Such a measure of uncertainty is
highly relevant in applications of this method for autonomous
or safety-critical systems.

GPASSM models have been used successfully in appli-
cations such as learning driver behaviours [1] and anomaly
detection in marine vessels [2]. The models have been shown
to significantly reduce estimation error compared to non-
augmented models, and methods for reducing the computa-
tional complexity using basis function expansions have been
explored and shown to be effective. Furthermore, adaptive
selection of basis functions is possible which can further
improve the computational complexity.

While showing promising results, these models have not yet
seen much use in practice, partly due to the still non-favourable
complexity scaling of Gaussian processes. The aim of this
work is to take the next step to increase the understanding of
different methods for combining Gaussian processes with state
space models, and ultimately to facilitate proper scalability of
the methods rendering them more practically useful.

The first step to achieve this goal is investigating different
ways of training the GP and using its predictions within the
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framework of state filtering, to identify strengths and weak-
nesses. In future developments, distribution of the GPASSM
model to several computational nodes is to be investigated
which may further improve tractability.

II. PROBLEM DESCRIPTION

The GPASSM model structure used in the sequel is

xk+1 = Fxk︸︷︷︸
Physical model

+ uGP (xk)︸ ︷︷ ︸
Data driven model

(1a)

yk = Hxk + ek (1b)

uGP (xk) ∼ GP
(
µ(xk),K(x, x′)

)
(1c)

where F describes the pre-determined system dynamics as a
linear state space model, and uGP (xk) is a nonlinear state-
dependent system input which is modeled as a Gaussian
process with mean µ(xk) and covariance K(x, x′).

Three different methods of combining the state-space and
the GP models are envisioned:

A. Offline learning

In the first method, filtering is performed using only the
state-space model, ignoring uGP (x). The estimated states are
stored and used afterwards to train uGP (x) by treating part
of the state as a GP model input, and another part as output.
For instance, in the example presented in section III, position
states are used as input and acceleration as output. This batch-
training method is incapable of continuous improvement, but
is simple to analyze and compare to other methods. The state-
space and the GP model parts are clearly separated with this
method, which makes a combined treatment of their individual
uncertainties less obvious.

B. Online learning with input prediction

In the second method, the state-space and the GP model are
separate, as in the first method. However, the GP is updated
and used online during the tracking by alternating between
updating xk and uGP (x). Due to this, the estimation will
become more informed of the unmodeled parts of the system
during the tracking process, resulting in higher accuracy.
However, erroneous state estimates due to noise or model
error will immediately be incorporated in the model, which in
turn may aggravate the model error affecting future estimates
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negatively. Appropriately dealing with this error feedback
effect is of interest to investigate in this work.

C. State augmentation by GP parameters

In the third method, the GP model is parameterized and
its parameters are concatenated to the state vector by letting
x̃ = [x, θ]⊤ and uGP (x) = f(θ, x), where f is a function of
the state x parameterized by θ. Here, the state-space model
and the GP model are fully joined into a single framework,
and the GP parameters will be updated by the same filtering
algorithm that is used to estimate the state. This method has
been investigated in previous works [2] [3] and has several
advantages. Due to the joined nature of the models, uncertainty
in the estimated state and in the learned GP parameters will
be connected by the joint covariance matrix. Consequently,
training data based on uncertain state estimates will propagate
to uncertainty in the model output, which may reduce the
impact of the aforementioned error feedback. A disadvantage
of this method is that the GP model must be parameterized,
for instance using methods based on inducing points or basis
function expansion. This induces a need to define the model
order a priori, reducing the flexibility of the GP model.

III. ILLUSTRATIVE EXAMPLE

The investigation is carried out using a simulated toy
problem where an electrically charged particle with mass is
subjected to a uniform gravitational field and a non-uniform
electrical field, seen in Fig. 1. The location of the particle
is tracked using a Kalman filter, where the time update step
uses a GPASSM. The prior state-space model is a stan-
dard motion model, such as constant-velocity or constant-
acceleration, while the Gaussian process is set up to learn
the acceleration field acting on the particle. By using the
joint model, significantly improved tracking should be possible
while the tracking is still adequate even before a single data
point has been collected.

This experiment setup enables a comparison between dif-
ferent methods of combining state-space and GP models. The
multi-modal aspect of the acceleration field can be used to
compare tracking accuracy in different regions — in areas
where the gravitational force dominates, a low-complexity
acceleration model should suffice. On the other hand, while
in areas where the acceleration is rapidly changing due to the
electrical forces dominating, a more complex model would be
required. Due to the shape of the acceleration field, the region
directly below the electrical charge will never be explored,
raising the question of how to treat lack of information. The
experiment setup additionally has interesting real-world coun-
terparts, such as navigation under unknown wind disturbances
or analysis of system behaviours by modeling the system input.

To illustrate the proposed method, 25 particles are simulated
for 100 time steps using methods A and B respectively. During
each particle’s duration, 10 equally-spaced estimates are used
to train the GP model. The resulting GP models are visualized
in Fig. 2 by predicting the acceleration uGP (x) on a grid of

positions. In regions where more particles have passed, more
data is available and the model has less uncertainty.

-

-
Tracked particle

Fig. 1: Illustration of experiment setup, where a tracked particle
is affected by gravity and an electrical field.

(a) Method A (b) Method B

Fig. 2: Quiver plot of predicted acceleration uGP (x) on a grid
of x values, with associated GP precision.

IV. SUMMARY AND OUTLOOK

The GPASSM class of models have been shown to be effec-
tive in joint filtering and system identification. The described
experiment setup has validated these results in preliminary
tests, and will be used in future work for evaluating properties
of the GPASSM as well as extending the models, primarily
with the goal of enabling real-time use by distributing the com-
putations. Distributed learning and estimation is possible to in-
vestigate by simulating a multitude of particles simultaneously
or in sequence. Modifying the GPASSM from a centralized
model to a near-edge model is a possible method for enabling
GPASSM models to be used in large-scale applications. Some
methods in consideration are consensus and diffusion Kalman
filters, as well as Bayesian committee machines. Strategies for
active learning and properly dealing with uncertain inputs are
other avenues of investigation.
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