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1 Introduction
We use the Hilbert transform to augment multivariate
signals and compute the corresponding complex-valued
covariance matrices. This augmented covariance matrix
representation is then combined with the geometrically
intuitive minimum distance to mean classifier, working
directly on a Riemannian manifold of Hermitian pos-
itive definite matrices. We see that this combination,
without the need of any additional hyper-parameters,
can lead to improved classification of multivariate sig-
nals, compared to using standard covariance matrices.

2 Methods
For a n-variate wide sense stationary (WSS) stochastic
process x(t) we denote the covariance as X := Cxx :=
Cov(x(t),x(t)) ∈ Rn×n. We also introduce the auto-
covariance function rxx(τ) = Cov(x(t + τ),x(t)) and
notice that rxx(0) = Cxx. Covariance matrices, or
estimated sample covariance matrices thereof, can be
identified with the symmetric positive definite (SPD)
matrix of size n, here denoted Sn

++. We use Sn to
denote the set of symmetric matrices of size n.

2.1 Classification of SPD matrices us-
ing Riemannian Geometry

The set Sn
++ constitutes a differentiable manifold and

the set of tangent vectors to Sn
++ at a point P ∈ Sn

++

can be identified with Sn. When equipped with a Rie-
mannian metric, g, the pair (Sn

++, g) constitutes a Rie-
mannian manifold. A commonly used metric is the so
called affine invariant Riemannian (AIR) metric

⟨V,W ⟩X = ⟨X− 1
2V X− 1

2 , X− 1
2WX− 1

2 ⟩
= tr(X−1V X−1W ),

(1)

where X ∈ Sn
++ and V,W ∈ Sn are vectors in the

tangent-space at X. The induced geodesic distance
between two points X,Y ∈ Sn

++ using the AIR-metric
is [1]

dAIR(X,Y ) = ||X− 1
2Y X− 1

2 ||F =

[
n∑
i

ln2(λi)

] 1
2

, (2)

where λi are the eigenvalues of X− 1
2Y X− 1

2 .
The minimum distance to mean (MDM) classifier is a

simple and geometrically intuitive classifier that can be
used directly on Riemannian manifolds (M, gR). The
MDM classifier is trained by finding a mean for data
from each class-condition. Often the sample Fréchet
mean is used, defined as

X̄ = argmin
X

N∑
i=1

d2R(Xi, X), (3)

where dR(·, ·) is the geodesic distance induced from the
metric. Unseen data is assigned to the class for which
it has the shortest distance to the class mean.

2.2 Hilbert transform
The Hilbert transform for functions on R is defined as

f̂(t) =
1

π
p.v.

∫ ∞

−∞

f(τ)

t− τ
dτ, (4)

where p.v. denotes an extension of the regular integral
definition called the Cauchy principal value [2].

For a component-wise WSS stochastic process, x(t),
the Hilbert transform is defined as the component-
wise output of the linear filter with frequency function
g(ω) = −i sgn(ω) applied to x(t) [3].

For a signal x(t) we denote its component-wise
Hilbert transform as x̂(t). The corresponding analytic
signal of x(t) is denoted as xa(t) = x(t) + ix̂(t). No
matter if we consider the signal to be a WSS stochas-
tic process, a (truncated) realization thereof, or two
functions of certain function classes, one can show that

rxŷ(τ) = −rx̂y(τ) = −rTyx̂(−τ). (5)

The complex valued covariance matrix corresponding
to xa(t) is Xa := Cov(xa,xa). Expanding Xa using
Equation 5, we get the following real and imaginary
components

Xa = Cxx + iCx̂x − iCxx̂ + Cx̂x̂ = 2Cxx + 2iCx̂x. (6)

Such matrices Xa are Hermitian positive definite
(HPD) matrices, here denoted as Hn

++. At a point

1



X ∈ Hn
++, the corresponding tangent space is the set

of Hermitian matrices, here denoted Hn. Pairing Hn
++

and the AIR-metric from Equation 1 yields another
Riemannian manifold. The geodesic distance between
two such elements is again given by Equation 2.

3 Results
3.1 Classification example
Artificial data for two classes C1, C2 are generated as

xCi
(t) =

[
cos(2πft+ ψ)

cos(2πft+ ψ + ϕi)

]
+ e(t), (7)

where ψ ∼ U(0, 2π), ϕi ∼ N (µi, σi) (for i = 1, 2),
t ∈ [0, 1] is linearly spaced with T = 1000 samples,
f = 5, and e(t) is white noise with covariance Σe. The
corresponding standard and analytic sample covariance
matrix of such data are approximately

X(ϕi) =
1

2

[
1 cos(ϕi)

cos(ϕi) 1

]
+Σe, (8)

Xa(ϕi) =

[
1 e−jϕi

ejϕi 1

]
+ 2Σe. (9)

For datasets generated with different class-parameters
(µ1, µ2 ∈ [−π, π], σ1 = 0.45, σ2 = 0.9), MDM-classifiers
using the two covariance matrix representation are eval-
uated. The corresponding accuracies are reported in
Figure 1.

(a) Accuracies using standard covariance matrices.

(b) Accuracies using analytic covariance matrices.

Figure 1: Average classification accuracies for the
MDM-classifiers on the artificial datasets.

3.2 Classification of EEG-data:
We also evaluate the two different covariance matrix
representations for classification of EEG-data. The
dataset includes data from 9 subjects running two ses-
sions each. Each session consists of 288 trials, where
the subject performs motor imagery (MI) during 4 sec-
onds for one out of 4 different MI-conditions: left hand,
right hand, feet, or tongue. The EEG-device used in the
experiments have 22 channels and data was sampled
250 Hz. The data is band-pass filtered between 8-35 Hz
which is common practice for MI decoding. The used
performance metric is the average accuracy of a 5-fold
cross-validation, evaluated for each experiment session
individually. The results for each individual subjects
are reported in Figure 2.
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Figure 2: Average accuracy of each subject using the
MDM-classifiers (as well as a tangent space based clas-
sifier) when using the analytic and standard covariance
matrices respectively.

4 Conclusions
The Hilbert transform is used to construct analytic co-
variance matrices estimated from multivariate signals.
Without introducing any new hyperparameters, we dis-
play how this way of augmenting covariance matrices
can differentiate cases where the standard covariance
matrix can not. We show how the analytic version of
covariance matrices can improve the performance of
a geometrically intuitive machine learning algorithm
(MDM), working directly on the differentiable manifold
of SPD and HPD matrices.
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