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Abstract— Incentive problems represent a well-established
mathematical framework to describe interactions between se-
quential decision makers. Recent developments have leveraged
control-theoretic and identification-based methods to address
the analytic complexity and uncertainty of the problem. In this
work we extend this framework by investigating the persistence
of excitation necessary for the convergence of the underlying
parameter estimator and further examine the exploration vs.
exploitation trade-off introduced by decision makers’ need to
learn others’ preferences. We derive an explicit persistence of
excitation condition on the Recursive Least Squares estimator
proposed and further demonstrate that normally distributed
incentives adequately explore the parameter space. We utilize
the resulting estimator to propose a switching-based incentive
law that alternates between exploratory perturbations and
targeted incentives, yielding minimized regret.

I. INTRODUCTION

Incentive design problems, also referred to in literature as
principal-agent (PA) problems or reverse Stackelberg games,
consider a class of sequential decision makers coupled via
interdependent costs. In these games the principal designs
a mapping from agents’ action space to his own and then
makes this information available to influence the agents’
responses. While this framework historically has its roots in
economic theory [1], [2], it has recently seen significant de-
velopment in control and machine learning to model human-
in-the-loop systems [3]–[6]. Applications include adaptive
pricing of energy products in smart grids [7]–[9], congestion-
aware road tolling [10], [11] and data crowdsourcing mar-
kets [12], [13].

A significant challenge in incentive design problems is that
of adverse selection [14], i.e. information asymmetry arising
from unknown agent cost functions. While this challenge
is usually addressed via the design of mechanisms that
induce truthful participation [15], [16], these approaches are
restricted to static, one-shot games and cannot be easily gen-
eralized. For this work we consider an approach introduced
by Ratliff et. al. [17] in which agents’ preferences (types)
are adaptively estimated by the principal through repeated
PA games and information is derived from the resulting
Nash equilibria (NE). Although very promising, this method
necessitates a restrictive persistence of excitation assumption
(see [17, Theorem 1] and numerical examples therein) that
is difficult to satisfy or verify a priori.

Our work makes two contributions toward addressing this
limitation. We investigate games with quadratic costs [18],
[19] and define a linear regression that enables the estimation
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of agent types through repeated observation of NE. We
derive explicit eigenvalue bounds for the design matrix under
normally distributed incentives and therefore guarantee the
excitation of the type identification portion of the algorithm.
Moreover, we consider the impact parameter estimation has
on the principals ability to control agents’ response and
therefore introduce an incentive rule that asymptotically
minimizes tracking regret by switching between exploration
of the parameter space and exploitation of current type
estimates.

II. PROBLEM FORMULATION AND
PERSISTENTLY EXCITING INCENTIVES

We consider a noncooperative game of n agents, each
choosing a strategy xi ∈ R 1. Each agent is equipped with
a cost function

ci(x, p) =
1

2
miix

2
i +

∑
j ̸=i

mijxixj + pixi, (1)

with mi ∈ Rn, where the first two terms represent a nominal
cost dependent on the collective action x = (xi)

n
i=1 and

pixi is the incentive (reward or penalty) that the planner
imposes on agent i. The principal’s objective is to drive the
agents’ response to some desired point xd ∈ Rn though
agents’ nominal costs are unknown. Following the method
introduced in [17], we address the principal-agent problem
as a control-theoretic estimation and tracking problem where
the principal models agents’ costs as ci(x, p) = Φ⊤

i (x)θ
∗
i +

pixi, where Φi : Rn → Rm represents a collection of
m monomial kernel functions and θ∗i ∈ Rm an unknown
parameter to be estimated. We call θ∗i the agents’ type.

Assumption 1. All agents’ cost functions ci are strongly
convex and continuously differentiable.

Under Assumption 1, the differentiable game (ci)
n
i=1 en-

joys a desirable property: for each incentive p = (pi)
n
i=1 ∈

Rn, there exists a unique NE which we denote x∗(p) ∈
Rn, and moreover the mapping x∗(·) is Lipschitz contin-
uous [20]. Since each agent acts to minimize their own
cost, the NE is determined by a first order optimality
condition [19], [21] and therefore there exists an (unknown)
nonsingular matrix M ∈ Rn×n, M = [mij ]

n
i,j=1 such that

Mx∗(p) + p = 0 for any p ∈ Rn.
It is significant to note that the bijection x∗(p) is linearly

parametrized by θ∗ = (θ∗i )
n
i=1 ∈ Rnm in the sense that there

1We assume without loss of generality that agents’ strategies are scalar to
simplify notation. Results can be generalized to arbitrary finite-dimensional
strategies with similar techniques.



exists a matrix-valued, nonlinear map V : Rn → Rnm×n

such that
V ⊤(x∗(p))θ∗ + p = 0 (2)

for any p ∈ Rn, where

V (x) = diag
(
∂Φ1(x)

∂x1
, . . . ,

∂Φn(x)

∂xn

)
.

Note that V (x) is a polynomial mapping that may be com-
puted from {Φi} given the principal’s decision of kernels.
The principal will utilize the linearity of agents’ response,
given in (2), by iteratively issuing incentives and observing
the resulting NE.

Assumption 2. For any incentive pk issued at iteration k,
the planner can observe the response xk+1 = x∗(pk).

Remark. Assumption 2 is restrictive in the sense that it
necessitates agents’ response to an issued incentive to be
instantaneous or, vice versa, that “enough time” has passed
until observation [17]. Recent works have attempted to ad-
dress this limitation by considering the dynamics of agent’s
responses [19], [22] but usually must impose more structure
onto agents’ nominal costs.

Given the collection of observations {(pt, xt+1)}kt=0, the
principal updates his estimate of types to minimize the
squared mean error of regression (2), i.e.

θk+1 = arg min
θ∈Rnm

{
k∑

t=0

(V ⊤(xt+1)θ + pt)
2

}
.

A recursive least squares (RLS) estimator for the above loss
is considered and therefore the x, θ-update iterations are

xk+1 = x∗(pk) = −M−1pk, (3)

θk+1 = θk − Lk(V
⊤(xk+1)θk + pk), (4)

Lk = ∆kV (xk+1)
(
I+ V ⊤(xk+1)∆kV (xk+1)

)−1
(5)

∆k+1 = ∆k −∆kV (xk+1)

·
(
I+ V ⊤(xk+1)∆kV (xk+1)

)−1
V ⊤(xk+1)∆k (6)

where ∆0 = ϵ−1I for some ϵ > 0 and pk denotes the
incentive rule to be designed.

Theorem 1. Let Assumptions 1-2 be satisfied and NE
response according to (3), then for normally distributed
incentives pk ∼ N (0,Σk), Σk ≻ 0, the regressor covariance
satisfies

δ1I ⪯ E
[
V (xk+1)V

⊤(xk+1)
]
⪯ δ2I, ∀k ≥ 0, (7)

where constants δ1, δ2 are

δ1 =m−2

(
λmin(Σ

1
2

k )

∥M−1∥2

)2nK

·
(
max{1, ∥MΣ

1
2

k ∥}
)2(1−m)

·
((

d

⌊d/2⌋

)
(⌊d/2⌋ − 1)!!

)−2n

> 0,

δ2 =d!(1 + d)2m2(m−1) ·
(
max{1, ∥MΣ

1
2

k ∥}
)2

·
((

d

⌊d/2⌋

)
(⌊d/2⌋ − 1)!!

)2n(m−1)

> 0,

and K ≜
∑d

a=0

(
n+a−1

a

)
.

By Theorem 1 it holds that
lim sup k−1

∑k
t=1 ∥V (xt+1)∥2F < ∞ a.s. and moreover

k−1
∑k

t=1 V (xt+1)V
⊤(xt+1) → Γ a.s. with the PSD matrix

Γ ⪰ δ1I. Utilizing [23, Theorem 2] we can then conclude
the strong consistency of the estimator θk.

Theorem 2. Let Assumptions 1-2 hold and the NE response
satisfy (3). Then for pk ∼ N (0,Σk), Σk ≻ 0, the type
updates (4)-(6) guarantee θk → θ∗ a.s. while k → ∞.

III. INCENTIVE DESIGN WITH REGRET
MINIMIZATION

In this section, we consider the incentive design problem.
The planner’s objective is to design the incentive when the
parameter θ∗ is unknown, in such a way that it minimizes
the average regret Rk, defined as

Rk =
1

k

k−1∑
t=0

∥xt+1 − xd∥22.

To this end, we propose the following switching incentive
law:

pk =

{
−V ⊤(xd)θk, k ∈ [τi, σi)

wk, k ∈ [σi, τi+1)
(8)

where wk ∼ N (0, I), and {τi}i≥0, {σi}i≥0 are switching
times satisfying 0 = σ0 ≤ τ1 ≤ σ1 ≤ . . . and

σi = min

t ≥ τi : λmin(t) < C log

(
t−1∑
k=0

∥V (xk+1)∥2F

)δn


τi+1 = min

t ≥ σi : λmin(t) ≥ C log

(
t−1∑
k=0

∥V (xk+1)∥2F

)δc


where δn, δc and C are fixed constants with 0 < δn <
δc and C > 0, and λmin(t) is defined as λmin(t) =

λmin

{
t−1∑
k=0

V (xk+1)V
⊤(xk+1)

}
.

Theorem 3. Let Assumptions 1-2 be satisfied, then the
planner that imposes online type identification (4)-(6) and
incentive design law (8) can minimize the average regret
Rk asymptotically, i.e.,

lim
k→∞

Rk = 0. (9)

IV. NUMERICAL EXAMPLE

Consider the two player quadratic game given by costs
according to (1) where parameters mij , i, j ∈ {1, 2} are
such that M is nonsingular and Assumption 1 is satis-
fied. Define kernel functions for players to be Φi(x) =

xi

[
1 x1 x2

]⊤
, i ∈ {1, 2}, and the corresponding types

θ∗1 =
[
0 0.5m11 m12

]⊤
and θ∗2 =

[
0 m21 0.5m22

]⊤
.

At each iteration, the system planner uses the type identifi-
cation given in (4)-(6) and incentives (8), and observes the
agent response xk+1 that is the unique NE satisfying equilib-
rium condition (3). Switching times for (8) are selected with
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Fig. 1. (a) Players’ response to issued incentives and (b) parameter
estimation error. Notice that the first switch to exploitation occurs early in
the learning cycle, so agents’ responses exhibit some error. As estimation
error converges, principal can precisely incentivize the agents.
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Fig. 2. (a) Switching boundaries used in (8). (b) Switching trajectory
between exploration and exploitation: Mode 1 represents the exploitation
incentive, and Mode 0 is exploration.

constants C = 10−2, δn = 3.5 and δc = 3.8. Fig. 1 presents
the trajectories of player response to issued incentives and
shows the strong convergence of the type estimator. Fig.
2 presents the switching criteria and decision boundaries
dependent on the excitation signal λmin(t). Finally, Fig.
3 demonstrates the per iteration regret accumulated by the
proposed scheme.
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