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Abstract
We present a new method for estimating high-
dimensional sparse partial correlation and inverse
covariance matrices, which exploits the connec-
tion between the inverse covariance matrix and
linear regression. The method is a two-stage
estimation method wherein each individual fea-
ture is regressed on all other features while posi-
tive semi-definiteness is enforced simultaneously.
We provide statistical rates of convergence for
the proposed method which match, and improve
upon, previous methods for inverse covariance
and partial correlation matrix estimation, respec-
tively. We also propose an efficient proximal split-
ting algorithm for numerically computing the es-
timate. The effectiveness of the proposed method
is demonstrated on both synthetic and real-world
data.

1. Introduction
Two important and closely related problems in statistical
learning are the problems of estimating a partial correlation
network and the inverse covariance matrix, also known as
the precision matrix, from data. Partial correlation networks,
which generalize the Gaussian graphical model, are used
to model the relationships between variables while condi-
tioning on all other variables, and are useful for inferring
causal relationships between variables. Partial correlation
networks are used in a plethora of applications, such as in
the analysis of gene expression data (de la Fuente et al.,
2004), and psychological data (Epskamp & Fried, 2018).
The precision matrix, from which we can obtain the partial
correlation network, is also of interest in its own right, as
it also appears in linear discriminant analysis (Hastie et al.,
2009) and in Markowitz portfolio selection (Markowitz,
1952). However, due to the high-dimensionality of the prob-

1Division of Decision and Control Systems, KTH Royal Insti-
tute of Technology, Stockholm, Sweden 2Lynx Asset Management
AB, Stockholm, Sweden. Correspondence to: Samuel Erickson
<samuelea@kth.se>.

Copyright 2024 by the author(s).

lem, estimating a precision or partial correlation matrix is
often challenging as the number of parameters are on the
order of the squared number of features. For this reason,
classical methods, such as using the inverse of the sample
covariance matrix, are known to perform poorly whenever
the number of observation is not extremely large. Addi-
tionally, they produce estimates which are almost surely
dense. This makes regularization crucial, since in many
applications we typically only have a moderate number of
observations, and in particular, we are most often seeking a
sparse estimate of which gives rise to a more parsimonious
and interpretable network model.

2. Background
Suppose Z is a square-integrable mean-zero random vector
taking values in Rp, with non-singular covariance Σ, and
inverse Ω = Σ−1. Then the best linear unbiased predictor
Z⊤
\jθj of a feature Zj given all other features

Z\j = (Z1, . . . , Zj−1, Zj+1, . . . , Zp)

can be characterized via the precision matrix by

θj = −Ω\j,j/Ωjj .

Here Ω\j,j denotes the jth column of Ω with the jth el-
emented omitted. Moreover, the variance of the residual
εj = Zj − Z⊤

\jθj is given by Var(εj) = 1/Ωjj . For this
reason, if Z follows a Gaussian distribution Zj and Zk are
conditionally independent given the remaining features if
and only if θjk = 0, or equivalently, Ωjk = 0. This connec-
tion is the foundation of Gaussian graphical models.

For quantifying the correlation between two features Zj
and Zk given the remaining features, we can define the
partial correlation between them as the negative correlation
between εj and εk,

ρjk|\{j,k} = −Corr(εj , εk) = − E(εjεk)√
E(ε2j )E(ε2k)

,

which can be written in terms of the precision matrix and
the linear regression as

ρjk|\{j,k} = − Ωjk√
ΩjjΩkk

=
τk
τj

θjk,
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respectively. Thus we define the partial correlation matrix
Q as

Q = −TΩT,

where T = diag(τ1, . . . , τp). We call the weighted network
that Q defines the partial correlation network.

3. Proposed method
Based on the connection described in §2, we propose the
joint partial regression method, which is a two-step estima-
tion method for simultaneous estimation of the precision and
partial correlation matrices, and is described in Algorithm 1.

Algorithm 1 JOINT PARTIAL REGRESSION

Input: Data matrix X ∈ Rn×p, penalty parameter λ.

for j = 1, . . . , p do

lasso regression

θ̂j = argmin
θ∈Rp−1

{
1

2n
∥Xj −X\jθ∥22 + λ∥θ∥1

}
,

and compute the estimate τ̂2j of the residual vari-
ance.

end
Solve the convex program

minimize
p∑
j=1

(
1

2n
∥Xj −X\jθj∥22 + λ∥θj∥1

)
subject to Ωjj = 1/τ̂2j , Ω\j,j = −θj/τ̂

2
j ,

Ω ⪰ 0, Q = −T̂ΩT̂

with the estimated residual variances τ̂2j and regularization
parameter λ to obtain the estimates Ω̂ and Q̂ of the precision
matrix and partial correlation matrix, respectively.

4. Theoretical results
We establish statistical estimation error rates under the fol-
lowing assumptions.
Assumption 4.1. The dimensionality is such that p/n ≤
1− δ for some δ ∈ (0, 1), and the degree

d = max
j

∑
k ̸=j

1(Ω⋆jk ̸= 0)

of the partial correlation network is such that
d
√
log(p)/n ≤ M for some constant M > 0.

Assumption 4.2. The rows of the design matrix X ∈ Rn×p
are n i.i.d. samples from a random vector with covariance
matrix Σ⋆, and each Xij is sub-Gaussian with associated
norm ∥Xij∥ψ2 ≤ K for some K > 0.

Assumption 4.3. There exists constants κ ∈ (1,∞) and
L ∈ (0,∞) such that the precision matrix Ω⋆ = (Σ⋆)−1

satisfies

1/κ ≤ λmin(Ω
⋆) ≤ λmax(Ω

⋆) ≤ κ, and ∥Ω⋆∥ℓ1 ≤ L.

Defining s = card{(j, k) : Ω⋆jk ̸= 0, j ̸= k} as the size of
the partial correlation network, we can now state the main
result of this section using the assumptions above.

Theorem 4.4. Under Assumptions 4.1–4.3, there exist pos-
itive constants c, C1 and C2 such that Algorithm 1 with
λ = c

√
log(p)/n outputs an estimate Ω̂ of the precision

matrix that satisfies

∥Ω̂− Ω⋆∥F ≤ C1

√
(s+ p) log p

n
(1)

and an estimate Q̂ of the partial correlation matrix that
satisfies

∥Q̂−Q⋆∥F ≤ C2

√
s log p

n
(2)

with probability at least 1− 6/p.

The statistical rate of convergence (1) matches the state
of the art for precision matrix estimation (Rothman et al.,
2008), whereas (2) improves upon the state of the art for
partial correlation estimation (Peng et al., 2009).

5. Numerical experiments
We evaluate the performance of the joint partial regression
method on synthetic data for which the distribution and the
true precision matrix are known. In Figure 1, the perfor-
mance of the proposed method (blue) is compared with the
graphical lasso (red), as well as the ideal oracle estimator
(green). We compare the performances on different classes
of precision matrices.
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Figure 1. Average Frobenius error versus number of features with
±2× SE bands for AR(1) model (left) and Hub network model
(right).
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