
Explicit receding-horizon dynamic games
Emilio Benenati∗, and Giuseppe Belgioioso∗

∗Division of Decision and Control Systems, KTH Royal Institute of Technology, Sweden

Abstract—In the context of non-cooperative constrained multi-
agent systems, we show that the finite-horizon coupled optimal
control problem (also known as dynamic game) admits a solution
which is an affine function of the initial state when the agents’
objectives are quadratic and the constraints are affine. We
present an algorithm for computing explicitly such solution
for every initial state, thus reducing the online computational
burden needed in the implementation of non-cooperative receding
horizon controllers.

I. INTRODUCTION

Dynamic games have recently emerged as a modeling
framework for non-cooperative multi-agent control problems
with applications that span from autonomous driving [1] and
racing [2], [3] to supply chains management [4]. In these
applications, dynamic games are typically solved in receding-
horizon, that is, by recomputing a finite-horizon open-loop
Nash equilibrium (ol-NE) input sequence [5] at each time-
step, and by applying the first input of the resulting sequence.
Specifically, the receding-horizon game framework leads to
complex interactive behaviors [6], as every agent effectively
models the other agents as rational entities, and the recom-
putation enables real-time adaptation to disturbances within
operating constraints. This method generalizes the commonly
employed Model Predictive Control (MPC) architecture to the
case of non-cooperative agents. Crucially, the sampling time of
the resulting control action is highly dependent on the solution
speed of the finite-horizon ol-NE problem. For example, the
authors in [7] show that the computation time required by
two state-of-the-art solvers for nonlinear constrained games
(ALGAMES and iLQGames) is estimated to 860 ± 251ms
and 705 ± 209ms, respectively, for an autonomous driving
scenario with only 4 agents. This computation time would
result in a controller with update frequency of approximately
2Hz. In this work, we reduce the online computational burden
for the subclass of strongly monotone dynamic games with
linear constraints and quadratic objectives (LQ games) by
extending the Explicit MPC concept [8] to game-theoretic
settings. First, we reformulate the finite-horizon LQ game
as an affine variational inequality (AVI) [9]. Then, we ob-
serve that the resulting optimal control trajectory satisfying
the Karush-Kuhn-Tucker (KKT) conditions of the AVI [9,
§1.3.2] can be expressed as a piecewise-affine function of
the initial state. This observation allows one to derive an
explicit expression of the ol-NE for every initial state via an
offline computation. The online implementation of the con-
troller then simply amounts to the evaluation of a piecewise-
affine function. This approach could significantly improve the
performance of receding-horizon game theoretic controllers in

applications where limited computing capabilities is available
and high clock frequencies are required, such as multi-agent
autonomous driving.

II. PROBLEM FORMULATION

We consider N non-cooperative agents, where each agent i
has decision authority over a control input ui for the system

x[t+ 1] = Ax[t] +
N∑
i=1

Biui[t]. (1)

We denote as ϕ(x0, ui,u−i; t) the state evolution at time t
from the initial state x0 of the system in (1) when the agent
i applies the input sequence ui and the remaining agents
apply the input u−i = (uj)j ̸=i. Let us define the ol-NE
u∗ = (u∗

i )i=1,...,N as the input sequence that, for all i, solves
the optimal control problem with horizon T :

u∗
i ∈ arg min

ui∈RmT
Ji(x0, ui,u

∗
−i) (2a)

s.t. Cxϕ(x0, ui,u
∗
−i; t) + cx ≤ 0, ∀t (2b)

Cu
i ui[t] + cu

i +
∑

j ̸=i C
u
ju

∗
j [t] ≤ 0, ∀t,

(2c)

where the objective is quadratic:

Ji(x0, ui,u−i) :=
1

2

(
∥ϕ(x0, ui,u−i;T )∥2Pi

+

T−1∑
t=0
∥ϕ(x0, ui,u−i; t)∥2Qi

+ ∥ui∥2Ri

)
.

(3)

An interpretation of the condition in (2) is that each agent
simultaneously computes a control trajectory that is the “best
response” to the control trajectories of the other agents, while
satisfying shared input and state constraints. We are concerned
with computing an explicit formulation for the mapping

x0 7→ u∗ such that u∗
i solves (2) for all i. (4)

III. METHODOLOGY

We reformulate the state constraints in (2b) as coupling
input constraints with an affine dependence on the initial
state x0 by substituting the dynamics (1) into (2b). Via
straightforward calculations, one can find matrices C,Θ and
a vector c such that

u satisfies (2b), (2c) for all t ⇐⇒ Cu+Θxo + c ≤ 0.

Furthermore, the partial gradients with respect to ui of the
objective function Ji are linear. We then find matrices M,Γ
such that  ∇u1

J1(x0, u1,u−1)
...

∇uN
JN (x0, uN ,u−N )

 = Mu+ Γx0. (5)



By specifying a known result [10] to the case at hand, if
Qi, Pi ⪰ 0, Ri ≻ 0 for all i then an ol-NE for the game
in (2) can be found as a solution to the VI

find u∗ such that

{
Cu∗ +Θxo + c ≤ 0

(u− u∗)⊤(Mu+ Γx0) ≥ 0,

∀u such that Cu+Θxo + c ≤ 0.

(6)

Furthermore, the solution to the VI in (6) is unique for each x0

if M ≻ 0. The solution to (6) is equivalently the pair (u∗, λ∗)
that solves the KKT system

0 = Mu∗ + Γx0 + C⊤λ∗ (7a)
0 ∈ NR+

(λ∗)− Cu∗ −Θx0 − c, (7b)

where NR+ is the normal cone of the set of non-negative real
vectors. Given an initial state x0, denote as

∼
λ the multipliers

associated with the active constraints at the solution, and as
∼
C,

∼
Θ,

∼
c the associated rows of C,Θ and c, respectively. Then,

if
∼
C is full row rank:

from (7a):

u∗ = −M−1(
∼
C⊤∼

λ+ Γx0) (8a)

substitute in (7b), note NR+
(
∼
λ) = 0:

0 = −
∼
CM−1(

∼
C⊤∼

λ+ Γx0)−
∼
Θx0 −

∼
c (8b)

⇐⇒
∼
λ = −(

∼
CM−1

∼
C⊤)−1(Γx0 +

∼
Θx0 +

∼
c) (8c)

substitute in (8a):

u∗ = M−1
∼
C⊤(

∼
CM−1

∼
C⊤)−1(Γx0 +

∼
Θx0 +

∼
c)−M−1Γx0.

(8d)

Thus, the ol-NE input sequence is an affine function of the
initial state for all the initial states whose associated solution
has the same active constraints as u∗. The region of the
state space with these active constraints is a polyhedron
characterized by the following inequalities:

CM−1
∼
C⊤(

∼
CM−1

∼
C⊤)−1(Γx0 +

∼
Θx0 +

∼
c)+

Θx0 + c− CM−1Γx0 ≤ 0, (9a)

−(
∼
CM−1

∼
C⊤)−1(Γx0 +

∼
Θx0 +

∼
c) ≥ 0. (9b)

where (9a) imposes that the input in (8d) is feasible, and (9b)
imposes that the multipliers computed according to (8c) are
non-negative. We then derive Algorithm 1 by evaluating via
(8d) the control action in the associated region defined by (9)
for an initial state x0. Then, we partition the remainder of the
state space into convex polyhedra, and we repeat the process
recursively for each of the resulting regions. The resulting
piecewise-affine solution mapping can then be used for the
online implementation of the controller in Figure 1.

IV. CONCLUSION

The open-loop Nash equilibrium of a finite-horizon linear-
quadratic, monotone game is a piecewise affine map of the
initial state. We present an algorithm to compute such map-
ping, which extends the well-known framework of explicit
MPC to non-cooperative multi-agent scenarios. The explicit

Algorithm 1
INITIALIZATION

1: Append {x ∈ Rn|Cxx+ cx ≤ 0} to R list
2: while R list is not empty do
3: R0 ← Pop(R list)
4: Solve (6) for some x0 ∈ R0

5: Determine the active constraints,
∼
C,

∼
Θ,

∼
c.

6: Compute C = {x ∈ Rn|(9)}
7: Compute u∗ for C via (8d)
8: {Ri} ← Partition(R0 \ C)
9: Append {Ri} to R list

10: end while

x+ = Ax+
∑

i∈I Biui

u∗ that solves (6)

xu∗[0]

Fig. 1. Block scheme of the closed-loop dynamics with receding-horizon
open-loop Nash equilibrium controller.

computation enables for an online solution of the game,
which is of practical interest given the growing interest on
game-theoretic receding-horizon control. We aim to further
extend this work by showing its effectiveness on a simulated
autonomous overtaking system, comparing the computational
time with state-of-the-art Nash equilibrium solvers.
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