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Abstract— This paper presents sufficient conditions for opti-
mal control of systems with dynamics given by a linear operator,
in order to obtain an explicit solution to the Bellman equation
that can be calculated in a distributed fashion. Further, the class
of Linearly Solvable MDP is reformulated as a continuous-
state optimal control problem. It is shown that this class
naturally satisfies the conditions for explicit solution of the
Bellman equation, motivating the extension of previous results
to semilinear dynamics to account for input nonlinearities. The
applicability of the given conditions is illustrated in scenarios
with linear and quadratic cost, corresponding to the Stochastic
Shortest Path and Linear-Quadratic Regulator problems.

I. INTRODUCTION

For what classes of optimal control problems can we expect
the existence of efficient algorithms? Leading lights of the
field are the A∗ algorithm [1] for Stochastic Shortest Path
problems (SSP), the Linear-Quadratic Regulator problem
(LQR) [2] and Linearly solvable Markov Decision Processes
(LDP) [4]. The objective of this paper is to formalize
the connection between these seemingly disparate instances,
giving a set of sufficient conditions to guarantee that the
Bellman equation can be decoupled and solved explicitly.

In [4], the class of LDP is identified as a subset of MDP
with cost based on the Kullback-Liebler distance between an
underlying autonomous transition function and the controlled
dynamics. The key feature of an explicit linear equation
for the solution to the Bellman equation is leveraged to
find the optimal control. In order to illustrate the general
applicability of our conditions, we reformulate the class
of LDP as a continuous-state problem and show that the
resulting modified cost and input constraints together with
the dynamics share properties of SSP and LQR.

II. PROBLEM SETUP

We consider the infinite-horizon optimal control problem

Minimize
∞∑
t=0

∥x∥h(P )

subject to x(t+ 1) = APx(t), x(0) = x0

P ∈ P, x(t) ∈ X

(1)
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where X is a proper cone and AP is a bounded linear
operator parameterized by P . Let P be a closed subset of
some Hilbert space. Define the norm as

∥x∥w := ⟨w, x⟩ for x ∈ X , w ∈ int(X ∗) (2)

where X ∗ is the dual cone of X . Further, let the cone X be
invariant under the dynamics, i.e. APx ∈ X for all x ∈ X .
The codomain of the weighting function h(P ) is restricted,
h : P → int(X ∗), guaranteeing a positive immediate cost.
Define {Pi}ni=1 as a partition of the constraint set,

P = P1 × · · · × Pn. (3)

The existence of such a partition with specific structure in
relation to the cost and dynamics of (1), such that both
are additively separable, is key to enable decomposition of
the Bellman equation. This condition is formalized in the
following assumption:

Assumption 1: Let {Pi}ni=1 be a partition as in (3) with
Pi ∈ Pi such that

AP =

n∑
i=1

APi
and h(P ) =

n∑
i=1

hi(Pi), (4)

The functions hi(Pi) are X ∗-convex and APi
x are X -convex

in the parameter Pi for x ∈ X . Further, let ⟨hi(Pi), x⟩ be
coercive with regard to Pi for any x ∈ X .

A. The Linear-Quadratic Regulator

Consider the linear dynamics y(t+ 1) = (A+BK)y(t)
with y ∈ Rn, for some matrices A, B, i.e., assuming static
feedback u = Ky with gain K ∈ Rn×m chosen freely.
We illustrate here only the case of m = n to simplify
the exposition. In order to obtain a problem on the
form (1), let x(t) = y(t)y(t)⊤. This gives the expression
AKx = (A+BK)x(A+BK))⊤ for the dynamics with the
domain X given by the semidefinite cone. Restricting the
dynamics matrix A+BK to be invertible yields invariance
of X under AK . The immediate cost for symmetric weight
matrices Q and R is

∥x∥Q+K⊤RK = ⟨Q+K⊤RK,x⟩
= tr((Q+K⊤RK)⊤x)

= y⊤(Q+K⊤RK)y

using the Frobenius inner product on X . This is equivalent
to the typical quadratic cost for Q+K⊤RK ≻ 0. Finding
the K that solves (1) is then equivalent to solving the LQR
problem.



B. Stochastic Shortest Path

As shown in [3], SSP can be modeled by the optimal control
problem

Minimize
∞∑
t=0

[
s⊤x(t) + r⊤u(t)

]
over {u(t)}∞t=0

subject to x(t+ 1) = Ax(t) +Bu(t)

u(t) ≥ 0, x(0) = x0 ∈ Rn
+

1⊤u1(t) ≤ E⊤
1 x(t)

...
...

1⊤un(t) ≤ E⊤
n x(t)

(5)

Here, the input signal u ∈ Rm is partitioned into n subvec-
tors ui, each containing mi elements, so that m =

∑n
i=1 mi.

This is a special case of (1). Given static feedback u = Kx,
we let AKx = (A+BK)x and invariance of X = Rn

+ under
the dynamics corresponds to the condition A+BK ≥ 0.
This holds given an appropriate choice of the matrix E,
governing the input constraints in (5). The immediate cost is
expressed as the weighted 1-norm

∥x∥s+K⊤r = (s+K⊤r)⊤|x|
= (s+K⊤r)⊤x for x ∈ X .

The inclusion s+K⊤r ∈ int(X ∗) can be fulfilled by requir-
ing s > 0, r ≥ 0, guaranteeing observability of the state.

III. MAIN RESULT

The following theorem gives a sufficient condition for the
decomposition and explicit solution of the Bellman equation
for (1). Additionally, a program, which is demonstrated to
be convex in the cases of interest below, gives the optimal
cost function.

Theorem 1: Let Assumption 1 hold. Then, the following
statements are equivalent:

(i) The problem (1) has a finite value for all x0.
(ii) There exists λ ∈ X ∗ satisfying the equation

λ =

n∑
i=1

min
Pi∈Pi

hi(Pi) +A∗
Pi
λ (6)

(iii) The value of the program

Maximize ∥x0∥λ over λ ∈ X ∗

subject to
n∑

i=1

(
min
Pi∈Pi

hi(Pi) +A∗
Pi
λ

)
− λ ∈ X ∗

is bounded for x0 ∈ X .

Further, the maximum value of the program in (iii) and the
optimal value of (1) is given by ∥x0∥λ, with λ solving (6).
The optimally controlled dynamics are given by

Pi = argmin
Pi∈Pi

hi(Pi) +A∗
Pi
λ. (7)

IV. LINEARLY SOLVABLE MDP

The LDP framework of [4] can be reformulated as a
continuous-state problem on the form (1), with dynamics

x(t+ 1) = Px(t).

Consider the objective function

∥x∥h(P ) = s⊤x+ diag(P⊤log(P ⊘ P ))⊤x+ π⊤x (8)

where

π = (I − P⊤)1⊙ log((I − P⊤)1⊘ pg). (9)

Here, pg is the constant vector of unmodified transition rates
from non-goal states to the goal state in the original system,
and P are a constant given matrix defining the autonomous
dynamics. This construction makes the immediate cost equal
to that of [4], with the final term π⊤x representing the
cost incurred by transitions to the goal states in the original
model. We can simplify the constraint set, as the cost
associated with control in states with xi = 0 naturally
vanishes in the formulation (8).

P = {P : P⊤1 ≤ 1, P ≥ 0} (10)

with equality p⊤i 1 = 1 for row i if the ith element of pg is
zero. In order to show applicability of Theorem 1 we first
introduce a proposition concerning the immediate cost:

Proposition 4.1: The immediate cost (8) is a valid norm
for s > 0.

Proof: The term (h(P )− s)⊤x is equal to the KL-
divergence between two distributions (see [4]), the controlled
and autonomous dynamics, weighted by the state vector, and
is thus nonnegative. It follows then from positivity of the
dynamics that h(P )⊤x ≥ 0 with equality only in the case
x = 0 as a consequence of s > 0.

The above reformulation together with the application of
Theorem 1 shows the close connection between traditional
results for optimal control of linear systems [2] and the linear
cost achieved for LDP in [4]. Any sparsity in the autonomous
dynamics P is preserved in the optimal solution, similar to
the case of linear cost and dynamics [3].
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