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I. INTRODUCTION

Delays in closed-loop control systems tend to be undesir-
able. Even if not causing instability, the system performance
may suffer and behave more oscillatory. The delays may
not be inherent to the controlled plant, as sampling, control
signal calculation, actuation, and communication all require
varying amounts of time. Controllers in particular can be
limited in usefulness by the computation time, for example
solving the optimization problem of a nonlinear MPC every
timestep. Compared to running control software on normal
microcontrollers, cloud and edge computing can open up
the use of more powerful hardware which may alleviate
this problem at the expense of network delays and some
overhead. Networked control systems has been a popular
topic for the last twenty years, and is still highly relevant
with the transition to industry 4.0 [1]–[3].

The sampling period h must be larger than the worst-case
latency when using a single-core processor, otherwise the
control loop is prone to missing deadlines. However, if the
work can be delegated to multiple computation units, such
as edge offloading, multiple control loops can execute in
parallel in an interlaced manner. For example, with two con-
trollers one can use measurements from t = 0, h, 2h, 3h, . . .
whereas the other samples at t = 0.5h, 1.5h, 2.5h, 3.5h, . . ..
Both controllers have the same period and buffer the output,
such that the latency always is h, but the interval between
any sample or actuation is halved and the ensemble of
controllers can react to disturbances more rapidly. As the
number of controllers goes to infinity, the set of controllers
approaches a continuous-time controller with deadtime h. We
call this oversampling-based control, which is different from
oversampling used in digital signal processing.

The idea behind the proposed approach is to use compu-
tational power as resources to obtain better control perfor-
mance by replicating an existing controller. The objective is
not to design an optimal controller.

II. OVERSAMPLING

The most important assumption is that the computational
resources are fully utilized by the implemented control law,
i.e., parallelization of the algorithm. It is also assumed that
control signals are buffered by waiting after calculations
are finished, illustrated in Figure 1 with three interlaced
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Fig. 1. Illustration of interlaced control utilizing three processors PA,
PB and PC . Sampling and actuation occurs simultaneously at the up
respectively down arrows. Calculations are done during the blue segments,
and the output is buffered until the green segments end. One specific
controller interacts with the plant with period h; as there are multiple
processes, the shorter period µ is how often the plant is interacted with
by any of the controllers.

controllers. Besides ensuring each controller is periodic,
control signals will be applied in the correct order.

The basic idea is to sample faster than control signals
are calculated by executing N controllers and applying their
outputs in an interlaced manner. Interlacing control signals
is best explained with Figure 1 where upward arrows denote
sampling, and actuation is represented by downward arrows.
The most recent signal is held as output by the actuator.

Let h denote the sampling interval for a single controller
and µ = h

N the time between any sampling. The delay from
a disturbing event occurring to when it is being measured
is in the interval [0, µ], which shrinks to 0 as N → ∞. In
total, the delay from disturbance to correcting control signal
is in [h, h + µ], and goes to h as N → ∞, i.e., increasing
N improves the worst case response time. With the delay
lowered, disturbances may be suppressed more effectively.
This delay can either be ignored or dealt with by estimating
how the plant evolves from sampling until actuation time.

In order to execute multiple controllers in parallel and
interlace their control signals, a set of computational units
must be available for use as illustrated in Figure 2. This can,
for example, be multiple processor cores or servers over a
network. As of now, N is kept constant and dynamically
changing it is left for future work.

As a side effect of distributing the calculations, there
is an inherent robustness. There are still multiple backup
controllers if one computation unit fails or is compromised
and becomes a periodic disturbance. Investigating the effects
of failing controllers is left to future work.

Utilizing Simulink [4] and the TrueTime toolbox [5],
full control of simulation time is possible, allowing N to
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Fig. 2. The plant interactions are decided by the client that runs on a local
device. Communicating with the client, controllers are running on N = 3
processes, here named PA–PC .
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Fig. 3. The angle of a simulated Furuta pendulum, with an initial angle
of 0.3 radians. The number of controllers, N , varies from one to seven.
The more frequent control loop allow a more damped transient. Here h =
0.017 ms.

be easily changed. The effect of varying the number of
controllers is demonstrated on a simulated Furuta pendulum
in Figure 3. All controllers have h = 17 ms, and larger N
makes the trajectory less oscillatory.

III. IMPLEMENTATION

Oversampling-based control was also used on a real plant,
with a client-server architecture similar to Figure 2. A client
application, running on a device physically close to the plant,
communicates with N server applications, each setup to
solve MPC [6] problems formulated using CVXGEN [7].

The server application receives state measurements and
calculates the appropriate control signal, which is sent back
to the client and gets enqueued for actuation. Containerized
with Alpine Linux [8] as the base image, the server appli-
cation is easily deployed and can run wherever there is an
appropriate container runtime.

The client application on the local device oversees com-
munication. It receives data from the sensors and outputs to
the actuators. The client also sequentially delegates work to
the server applications, and handles timings.

Server applications were deployed in three configurations:
on the local device on different CPU cores, across different
computers and on a private edge. The pendulum angle vari-
ances are presented in Tables I to III. Either no disturbance
is applied, or periodically there is an impulse torque directly
before or after sampling.

TABLE I
ANGLE VARIANCE WHEN SERVERS RUN LOCALLY.

N

1 2 4 7

no disturbance 0.00246 0.00175 0.00139 0.00139
before sampling 0.00254 0.00188 0.00159 0.00145
after sampling 0.00256 0.00178 0.00173 0.00152

TABLE II
ANGLE VARIANCE WHEN SERVERS RUN ON SEPARATE COMPUTERS.

N

1 2 4 7

no disturbance 0.00195 0.00145 0.00132 0.00125
before sampling 0.00222 0.00169 0.00154 0.00167
after sampling 0.00228 0.00192 0.00172 0.00165

TABLE III
ANGLE VARIANCE WHEN SERVERS RUN ON THE EDGE. DUE TO

OVERRUNS AND LOST PACKETS, THE CONTROLLERS RUN WITH LARGER

h THAN IN TABLES I AND II. WITH ONLY ONE PROCESS IN USE, THE

CONTROLLER FAILS TO STABILIZE.

N

1 2 4 7

no disturbance † 0.00603 0.00361 0.00463
before sampling † 0.00325 0.00245 0.00227
after sampling † 0.00560 0.00393 0.00398
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