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Abstract—In this paper, we consider the solution of encrypted
linear regression using Homomorphic Encryption. This method
allows the computation of linear regression in an encrypted
environment. The proposed method consists of an iterative
method based on a modified Goldschmidt sequence. Numerical
results on synthetic data show that the method converges with
minimal accuracy loss due to encryption noise, indicating that our
approach is well-suited for homomorphically encrypted linear
regression.

I. BACKGROUND

A. Introduction

Linear regression is a simplistic yet powerful and princi-
pled statistical approach to model the relationship between
variables. However, performing linear regression over large
amounts of data might be expensive in terms of computational
cost. To overcome this problem, cloud computing can be used,
which involves using shared servers managed by third-party
providers. Since the data used in the cloud might be sensitive,
it raises the need to provide a privacy-preserving environ-
ment. This can be achieved with Homomorphic Encryption
(HE), which allows computations on encrypted data without
decrypting it [1]. In this way, it is possible to share data
with third-party providers while maintaining privacy. However,
HE schemes, such as the Cheon–Kim–Kim–Song (CKKS)
scheme [2], have strict constraints, such as the types and
number of operations that can be computed on encrypted
data. Hence, great care needs to be taken when implementing
algorithms using HE. One of the most significant obstacles
is the number of sequential operations that can be computed.
Typically, HE schemes only support addition and/or (a limited
number of) multiplications [3]. Hence, since divisions, and
in particular matrix inverses are not supported, one has to
resort to iterative algorithms to solve problems such as linear
regression. However, classical iterative methods, such as the
Gauss–Seidel method [4] require a large number of iterations.

Linear regression using HE has been considered in [5]
and [6]. However, these methods do not compute all the
operations in an HE environment. In particular, the methods
rely on plaintext client-side matrix inversion. Furthermore,
in [7], linear regression is implemented using the Paillier
encryption scheme [8], which supports only addition and
scalar multiplication. Computing dot products thus requires
additional tools like additive secret sharing, secure fixed-point
arithmetic, and interactive protocols. Since Paillier operates on
integers, using real numbers directly can lead to precision loss.

In contrast, our approach utilizes the CKKS encryption
scheme which supports both addition and multiplication on

real or complex numbers. This allows the computation of
linear regression in an encrypted environment and does not
require additional techniques for the computation of matrix
multiplications.

B. Linear Regression

Linear regression is a model that describes a linear rela-
tionship between a dependent (noisy) variable y ∈ Rdy and
an independent variable (parameters) x ∈ Rdx , according to

y = Hx+ r,

where H ∈ Rdy×dx is the observation matrix and r ∈ Rdy

is a noise term. The observation matrix is obtained starting
from a dataset D defined as a collection of input-output pairs
{(ui, yi)}Ni=1 where ui ∈ Rdx are the regressors (inputs) and
yi ∈ R are the corresponding target vectors (outputs) for each
sample i. The observation matrix is then constructed as H =
[u1u2 · · ·uN ]T . One way to estimate the parameters of this
model is to use the least squares method [4], which has the
analytical solution

x̂ = (HTH)−1HTy. (1)

As shown in (1), the core of this method is to invert the matrix
A = HTH and compute the product b = HTy. Typical
approaches for matrix inversion can be computed using one
of the classical iterative methods such as Gauss elimination or
Cholesky decomposition, see [4].

C. Homomorphic Encryption

In this work, in order to compute linear regression in an
encrypted environment, we use HE [9], a kind of encryption
that allows computations on encrypted data without decrypting
it. The core of this type of encryption is the use of a
structure-preserving map that ensures certain operations on
plaintexts can be mirrored by operations on ciphertexts such
that encr(a ⋄ b) = encr(a) ⋄ encr(b) and decr(encr(a ⋄ b)) =
decr(encr(a) ⋄ encr(b)) = a ⋄ b, where encr and decr are
the encryption and decryption functions respectively, and the
symbol ⋄ represents any given operation. In this work we
use the CKKS scheme [2]. This HE scheme is designed for
approximate arithmetic with real or complex numbers and
supports additions and a limited number of multiplications,
making it a leveled HE scheme [10], which means that
each sequential multiplication consumes one level, and the
number of available levels is set by specific parameters before
encryption. Moreover, the scheme is approximate due to the
way noise is added during encryption, such that the result of an
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Figure 1: Comparison of the errors for the two cases using synthetic data. (a) NSE and NED for the case with n = 3; (b) NSE and NED
for the case with n = 4; (c) dN for both cases.

encrypted operation will not be exact, but approximate, that is,
decr(encr(a) ⋄ encr(b)) ≈ a ⋄ b. Moreover, the CKKS scheme
allows us only to compute additions and multiplications.

II. METHOD

To solve (1) one can use iterative numerical methods, such
as Gauss elimination, Cholesky decomposition, or gradient
descent. However, these methods typically require a rela-
tively large number of multiplications and divisions, rendering
them not feasible to use together with CKKS. For these
reasons, implementing linear regression in the HE environment
is challenging. Instead, we propose the use of a modified
Goldschmidt algorithm, first proposed in [11]. The proposed
method solves the system (1) by numerically finding the
inverse A−1. In particular, our approach is based on the
modified Goldschmidt’s algorithm proposed in [11]. Note that
in our method all the operations are HE-friendly, meaning that
they can be easily computed in an HE environment.

III. RESULTS

We evaluate the proposed method on synthetic data. The
error of the matrix inversion is evaluated using the Norm
Spectral Error (NSE) and the Natural Distance (dN ) [12],
while for the parameter estimation, we used the Normalized
Euclidean Distance (NED).

To test our method, we consider two cases. For each case
we generate 10 synthetic samples and execute our algorithm.
We then compute the errors using the NSE, dN , and NED
defined above, followed by averaging these errors. For these
tests, we used random vectors v with dimension dy = 100 and
n = 3 and n = 4. From these results reported in Figure 1, we
can see that the method converges.

IV. CONCLUSIONS

In this work, we have defined a structured methodology
for evaluating fully Homomorphically Encrypted linear re-
gression. The proposed method allows the evaluation of a
linear regression model where the input data remains en-
crypted throughout the entire process. We then evaluated the
proposed method with synthetic data. Each computational step
is performed using encrypted operations without requiring data

decryption at any stage and without multiparty computation.
The results from these experiments show that the proposed
approach is capable of performing linear regression while
preserving data privacy.
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