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Abstract— We study the control of stochastic linear multi-
agent systems (MAS) under additive stochastic noise and
collaborative signal temporal logic (STL) specifications to be
satisfied with a desired probability. Given available disturbance
datasets, we leverage conformal prediction (CP) to address
the underlying chance-constrained multi-agent STL synthesis
problem in a distribution-free manner. By introducing non-
conformity scores as functions of prediction regions (PRs)
of error trajectories, we develop an iterative PR-scaling and
disturbance-feedback synthesis approach to bound training
error trajectory samples. These bounds are calibrated using a
separate dataset, providing probabilistic guarantees via CP. We
then relax the stochastic problem by tightening the robustness
functions using Lipschitz constants and the computed error
bounds. To address scalability, we exploit the compositional
structure of the multi-agent STL formula and propose a model-
predictive-control-like algorithm, where agent-level problems
are solved in a distributed fashion.

I. INTRODUCTION

Multi-agent systems (MAS) arise when multiple agents
collaborate to achieve global objectives, while signal tem-
poral logic (STL) offers a formal framework to specify such
objectives [1]. In stochastic settings, STL control synthesis
often relies on chance constraints, which are computationally
demanding and typically addressed via constraint tighten-
ing [2] or analytic techniques [3], but these can be con-
servative or intractable in non-Gaussian settings, limiting
applicability to general MAS. We propose a data-driven
control design for stochastic MAS under collaborative STL
specifications, using conformal prediction (CP) to provide
distribution-free probabilistic guarantees [4]. While CP has
recently been explored in control and STL [5], mostly for
single-agent systems, we focus on MAS under collaborative
tasks. Given agent-level disturbance datasets, we iteratively
train disturbance feedback controllers and prediction regions
of aggregated error trajectories, which are then calibrated
to ensure CP-based probabilistic guarantees, yielding tighter
bounds than existing methods [2], [6]. Last, we relax the
stochastic control problem via Lipschitz-based tightening
of robustness functions and propose a distributed MPC-
like algorithm exploiting the compositional STL structure to
enhance scalability.
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II. PRELIMINARIES AND PROBLEM SETUP

Conformal Prediction: If R(0), . . . ,R(k) are i.i.d. random
variables, then for any θ ∈ (0, 1), we have

Pr
{
R(0) ≤ Q1−θ

(
R(1), . . . ,R(k),∞

)}
≥ 1− θ, (1)

where Q1−θ

(
R(1), . . . ,R(k),∞

)
is the (1− θ)th quantile of

the empirical distribution {R(1), . . . ,R(k),∞} [7].
Signal temporal logic: We consider the STL syntax

φ := ⊤ | π | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1U[t1,t2]ϕ2, (2)

where π := (µ(x) ≥ 0) is a predicate, µ(x) : IRnx → IR, and
ϕ, ϕ1, and ϕ2 are STL formulas, which are built recursively
using predicates π, logical operators ¬ and ∧, and the until
temporal operator U . A scalar-valued function ρϕ(x(t)) of a
signal indicates how robustly a signal x(t) satisfies a formula
ϕ. Specifically, ρϕ(x(t)) ≥ 0 ⇐⇒ x(t) |= ϕ.
Dynamics: The aggregate dynamics of |ν| agents are

xν(t+ 1) = Aνxν(t) +Bνuν(t) + wν(t). (3)

STL specification: The MAS is subject to

ϕ =
∧

ν∈Kϕ

ϕν , (4)

where ϕν is a formula involving a clique of agents ν, with
1≤|ν|≤M , and Kϕ collects all these cliques induced by ϕ.
Disturbance: Sets Dwi={w(0)

i , . . .,w
(k)
i } of k+1 samples

∀i ∈ V are available, with w
(ς)
i =(w

(ς)
i (0), . . . , w

(ς)
i (N−1)).

Problem statement: Given x(0) = x0, we wish to solve

Min.
u(0:N−1)
x(0:N)

E

(
M∑
i=1

(N−1∑
t=0

(ℓi(xi(t), ui(t))) + Vf,i(xi(N))
))

s.t. x(t+ 1) = Ax(t) +Bu(t) + w(t), t ∈ IN[0,N),

Pr {xν(0 : N) |= ϕν , ∀ν ∈ Kϕ} ≥ 1− θ, (5)

where u(0:N−1), x(0:N), are the opt. variables, with
u(t) = (u1(t), . . . , uM (t)), and x(t) = (x1(t), . . . , xM (t)),
resp., and ϕ is a multi-agent STL formula to be satisfied by
x(0:N) with a probability 1− θ.

III. SUMMARY OF OUR APPROACH

Decomposition of dynamics: Consider the feedback policy

ui(t) =

t−1∑
k=0

Γt,k
i wi(k) + vi(t). (6)



Then, the aggregate dynamics of the agents in ν can be
decomposed into

zν(t+ 1) = Aνzν(t) +Bνvν(t), (7a)

eν(t+ 1) = Aνeν(t) +

t−1∑
k=0

Γt,k
ν wν(k) + wν(t). (7b)

Given disturbance feedback gains Γt,k
ν , the systems in (7)

can be analyzed independently.
Error trajectory samples: From disturbance samples
w

(ς)
i (0:N−1)∈Dwi , we may construct error samples

Dei={e(0)i (1:N), . . . , e
(k)
i (1:N)}, (8a)

e
(ς)
i (1:N)=(Ai+BiΓi)w

(ς)
i (0:N−1), ς ∈ IN[0,k]. (8b)

Training bounds for (7b) and disturbance feedback: Let
nonconformity scores

E(ς)(C,Γ)) = max
ν∈Kϕ

(
Cν∥e(ς)ν (1 : N)∥

)
, (9)

where C = {Cν}ν∈Kϕ
and Γ = {Γ1, . . . ,ΓM}. Synthesis

of Γ and C is formulated as

Minimize
C, Γ

Qθ̂

(
E(k1+1)(C,Γ), . . . , E(k)(C,Γ)

)
(10a)

subject to 0 ≤ Cν ≤ 1, ν ∈ Kϕ,
∑
ν∈Kϕ

Cν = 1. (10b)

Calibration: Using fresh datasets {e(1)i , . . . , e
(k1)
i }, and

optimal C∗, Γ∗, one can use (1) to obtain guarantees

Pr
{
e(0)ν (1 : N) ∈ B(q/C∗

ν), ∀ν ∈ Kϕ

}
≥ 1− θ, (11)

by computing q=Q1−θ

(
E(1)(C∗,Γ∗), ..., E(k1)(C∗,Γ∗),∞

)
.

Relaxation: The original problem in (5) can be relaxed as

Minimize
v(0), z(0)

M∑
i=1

(
N−1∑
t=0

(ℓi(zi(t), vi(t))) + Vf,i(zi(N))

)
subject to z(t+ 1) = Az(t) +Bv(t), t ∈ IN[0,N),

ρϕν (zν(0 : N)) ≥ Lϕν

q

C∗
ν

, ν ∈ Kϕ, (12)

where z(0) = x(0), and Lϕν
is the Lipschitz constant of the

robustness function ρϕν (zν(0:N)+eν(0:N)) wrt eν(0:N).
Distributed STL synthesis: Let Ti = {ν ∈ Kϕ | ν ∋ i},
and ϕ̂ =

∧
i∈V ϕ̂i, where ϕ̂i =

∧
νi∈Ti

ϕνi . In the following,

ϱϕνi (zνi
(0:N))=ρϕνi (zνi

(0:N))−Lϕνi

q

Cνi

, νi ∈ Ti. (13)

We introduce the following problems for the ith agent

P 0
i := Minimize

v0
i ,z

0
i

Li(z
0
i ,v

0
i ) subject to (14a)

z0i (k + 1)=Aiz
0
i (k)+Biv

0
i (k), k ∈ IN[0,N), (14b)

ϱϕi(z0
i ) ≥ 0, with z0i (0) = xi(0), (14c)

P t
i := Minimize

vt
i ,z

t
i

Li(z
t
i ,v

t
i)− Ωiµ

t
νt

subject to (15a)

zti(k + 1) = Aiz
t
i(k) +Biv

t
i(k), k ∈ IN[t,N), (15b)

ϱϕi(zt
i) ≥ 0, with zti(t) = xi(t), (15c)

ϱϕνt (zt
νt
)≥µt

νt
, νt= argmin

ν∈Ti, |ν|>1

{ϱϕν (zt−1
ν )}, (15d)

µt
νt
≥ min

(
0, ϱϕνt (zt−1

νt
)
)
, (15e)

ϱϕν (zt
ν)≥min

(
0, ϱϕν (zt−1

ν )
)
,∀ν∈Ti\{νt, i} (15f)

where Ωi ≫ 0, zti(τ) denotes the prediction of xi(τ) carried
out at time t, ϱϕν (zt

ν) is the robustness function of the
formula ϕν , ν ∈ Ti, evaluated over the trajectory zt

ν , and

zt
ν=(xν(0), ..., xν(t−1), ztν(t), ..., ztν(N)), (16)
vt
i=(vi(0), ..., vi(t−1), vti(t), ..., vti(N−1)), (17)

Li(z
t
i ,v

t
i)=

N−1∑
k=0

ℓi(z
t
i(k), v

t
i(k))+Vf,i(z

t
i(N)). (18)

Let also zt
i(xi(t),v

t
i)=(xi(0), ..., xi(t), z

t
i(t+1), ..., zti(N))

denote a trajectory where the last N−t nominal states are
generated by the last N−t inputs of vt

i starting from xi(t).
Alg. 1 summarizes the proposed distributed STL control
strategy. Complete version of this work is available in [8].

Algorithm 1 Distributed STL control of agent-i

1: for t in 1 : N do
2: Compute rti = minνi∈Ti

(
ϱϕνi (zt−1

νi
)
)

3: Measure xi(t) and wi(t−1)
4: Construct zt

i(xi(t),v
t−1
i )

5: Communicate rti , z
t
i(xi(t),v

t−1
i ) to j ∈ νi, νi ∈ Ti

6: Receive rtj , zt
j(xi(t),v

t−1
i ) from j ∈ νi, νi ∈ Ti

7: if rti < rtj for all j ∈ νi, νi ∈ Ti then
8: Solve P t

i and store (vt
i , z

t
i)

9: else
10: Update vt

i ← vt−1
i and zt

i ← zt
i(xi(t),v

t−1
i )

11: Apply ui(t) =
∑t−1

k=0 Γ
t,k
i wi(k) + vti(t)
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