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Toward Encrypted Anomaly Detection with
Minimal Privacy Leakage Using Functional Encryption

Junsoo Kim, Changhee Hahn, and Rijad Alisic

I. INTRODUCTION

With the increasing demand for security guarantees in
control systems, research shows that worst-case attackers use
data to learn system dynamics and estimate the state of the
system. Cryptosystems have been proposed to obstruct such
eavesdropping attacks [3]. Homomorphic encryption (HE) is
particularly promising as it allows operations on encrypted
signals to carry over post-decryption, keeping signals secret
outside the plant [2], while maintaining computational effi-
ciency [1] and low control errors [4].

However, HE signals are inherently malleable, meaning
that an attacker can easily modify the signals. While cryp-
tographic verification has been applied to control systems
before [5], combining it with encryption is challenging.
Furthermore, performing anomaly detection on encrypted
signals is much harder by design. An attacker, therefore,
needs not worry about being detected, as the cryptosystem
also conceals attacks.

We propose a method based on functional encryption (FE)
to address these challenges. FE discloses specific function
evaluations of encrypted messages, allowing observer-based
anomaly detectors to reveal information about anomalies
while keeping other private information concealed. By mod-
ifying existing encryption methods [6], we aim to achieve
minimal privacy leakage by disclosing only a binary value
of residuals for anomaly detection.

II. PROBLEM OF INTEREST

Consider a single-input-single-output plant described by:

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t)
(1)

where x(t) ∈ Rn is the state, u(t) ∈ R is the input,
and y(t) ∈ R is the output. Given that the pairs (A,B)
and (A,C) are controllable and observable, respectively, we
design an observer-based controller:

x̂(t+ 1) = (A− LC)x̂(t) + Ly(t) +Bu(t), x̂(0) = x̂0

(2a)
u(t) = Kx̂(t) +Kryr(t) (2b)
r(t) = y(t)− Cx̂(t) (2c)
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Fig. 1. Configuration of the proposed encrypted control scheme.

where x̂(t) ∈ Rn is the controller state, yr(t) ∈ R is the
reference, r(t) ∈ R is the residual, and {K,L,Kr} are the
gains ensuring stability.

The stability of (2a) allows for anomaly detection:

|r(t)| = |C(A− LC)t(x̂(0)− x(0))| ≤ ϵ for t ≥ T (3)

where ϵ > 0 and T > 0 are chosen appropriately.
The problem is to construct a feedback controller and

an anomaly detector using functional encryption, under the
following constraints:

Problem 1: Construct an FE scheme, a feedback con-
troller, and an anomaly detector under the constraints:

• Controller: The controller receives encrypted y(t) and
yr(t), computes encrypted u(t), and sends it back to
the plant without uncovering any signal values.

• Detector: The detector receives encrypted y(t) and
yr(t) to verify condition (3). Failure raises alarms. □

The proposed method, described in the next section,
addresses these constraints and ensures minimal privacy
leakage while enabling effective anomaly detection.

III. PROPOSED METHOD

The encryption domain is typically formulated over inte-
gers, requiring us to convert (2) to integer matrices compat-
ible with incoming encrypted signals. Our implementation
assumes that previous inputs u(t − k) for k = {1, . . . , T}
are sent alongside outputs y(t− l) for l = {0, . . . , T}. This
approach circumvents the need to know the initial state and
allows us to compute the input and residual as:
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[
u(t)
r(t)

]
=

[
K̃1

K̃2

]
· X̃(t), (4)

where X̃(t) includes current and past values of y(t) and
u(t). This computation is quantized using a uniform quan-
tizer over integers, defined as K1 = round(rK̃1),K2 =
round(rK̃2), X = round(rX̃) for a quantization factor r.

A. Encrypted Control and Anomaly Detection

The proposed cryptographic scheme builds upon the FE
scheme presented in [6]. It defines the following functions:

• KeyGen: Generates an evaluation key based on the
matrix to be multiplied with the signal.

• Enc: Encrypts a signal, represented as a vector.
• Eval: Takes KeyGen(K) and Enc(X) as inputs and

outputs F (K ·X) for a known function F .
Decryption is performed row-by-row by evaluating F (ρ)

for ρ = {−N, . . . , N} and checking if F (ρ) = F ((K ·X)i)
for each row i. Decryption is feasible if it is efficient,
meaning only a small (polynomially sized) set of ρ needs
to be checked, thus N should be small. According to (4),
we compute KeyGen(K1) once and send it to the controller.
Similarly, for the residual, we compute KeyGen(K2) and
send it to the anomaly detector. The signal, however, needs
to be modified.

Proposition 1: Consider s ∼ U(0,M), where M is large.
Decrypting Eval(KeyGen(K1), Enc(Xs)) = F (K1 · Xs) is
efficient and correct if and only if s is known. □

By sending Enc(sX), instead of Enc(X), the controller
cannot efficiently decrypt the result since F (ρ) must be eval-
uated M×N times. The plant, however, can perform decryp-
tion efficiently by evaluating F (sρ) for ρ = {−N, . . . , N}.

For anomaly detection, we use the other evaluation key,
KeyGen(K2). The detector similarly computes F (s ·K2 ·X).
To determine if the residual exceeds a threshold value |K2 ·
X| > ϵ without revealing additional information about K2 ·
X , the plant sends the additional set of values H(F (s·R)) for
R = {−ϵ, . . . , ϵ} and a publicly known hash function H . The
detector then takes F (s·K2 ·X), computes H(F (s·K2 ·X)),
and compares it to the set of values sent by the plant.

Proposition 2: Under nominal, attack-free scenarios, the
proposed scheme is efficient for both control and anomaly
detection. During an attack, decryption and anomaly detec-
tion become significantly slower. □

IV. SIMULATION RESULTS

Let the matrices {A,B,C} of the plant (1) be given as:

A =

[
1.1 0.4
0 0.1

]
, B =

[
0

0.472

]
, C =

[
0 1

]
.

The gain matrices for the controller (2a) are K =
[−4.442,−1.514], L = [0.718, 0.168]⊤, and Kr = 0, with
the spectral radius of A− LC being 0.356. An integrator is
added to the controller:

z(t+ 1) = z(t)− Cx̂(t), u(t) = Kx̂(t) + 0.629z(t).

Detection parameters are chosen as T = 30 and ϵ = 10−13.
Quantization parameter is r = 0.01. We implement a 80-bit

Fig. 2. The decryption process at each time step: The blue line represents
the ciphertext, while the colored dots indicate guesses of the plaintext.
Decryption is successful when a guess matches the ciphertext.

secure FE. To demonstrate anomaly detection, an attack is
injected at t = 40 with an arbitrarily large value.

Fig. 2 illustrates the decryption algorithm. At each time
step, a ciphertext of u(t) is presented to the decryption
algorithm (blue line). Several guesses of the plaintext value
u(t) are made (colored dots). Decryption is successful once
a guess matches the ciphertext. A similar procedure occurs
in the anomaly detector, where the residual r(t) is compared
to its permissible values.

When an anomaly occurs, decryption of u(t) requires sig-
nificantly more guesses, up to 105 integers, before identifying
the correct message. Similarly, the detection scheme triggers
an alarm after an exhaustive search of {H(F (si))}|i|≤ϵ.
Attacks lead to substantial slowdowns in computation time
for set searches, sometimes by several orders of magnitude
(not shown here). While there is no attack, the plant can
be controlled at millisecond speed. The bottleneck is the
generation of the testing set for the anomaly detector, which
is done locally at the plant.

V. CONCLUSIONS

We developed a control-and-detection scheme using func-
tionally encrypted data. Our modified FE schemes ensure
signal confidentiality, revealing only a binary attack indicator.
Attacks slow down decryption and detection. Future work
will address this slowdown and potential side-information
leaks due to it. REFERENCES
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