
Personalized Probabilistic Load Forecasting
using Gaussian Processes

Johannes Ridefelt
Division of Signals and Systems

Dep. of Electrical Engineering, Uppsala University
Uppsala, Sweden

johannes.ridefelt@angstrom.uu.se

Roland Hostettler
Division of Signals and Systems

Dep. of Electrical Engineering, Uppsala University
Uppsala, Sweden

roland.hostettler@angstrom.uu.se

I. BACKGROUND

With an increasing number of distributed energy re-
sources (DERs) and electric vehicles (EVs), the demands
on the electricity grid are becoming higher and more
complex. However, these changes also create an oppor-
tunity to increase grid efficiency and lower costs for
both operators and individual clients. As more private
homeowners and enterprises install complex local energy
systems that combine electricity production, storage, and
flexible loads—e.g., solar panels, battery-energy-storage
systems, and EVs — the need for accurate, personalized
electrical load forecasting is increasing.

Load forecasting is a well-studied problem, and many
different approaches have been proposed. Time series
analysis methods such as ARMA and ARIMA, regres-
sion based methods, and machine learning methods such
as neural networks and support vector machines have all
been used for load forecasting [1]. Uncertainty in load
forecasting is one of the most important aspects, and
various probabilistic forecasting methods have therefore
been proposed, such as quantile regression [2] and mul-
titask Bayesian deep learning [3]. These methods mostly
rely on large amounts of data to train the models, making
them less suitable for personalized load forecasting,
where the amount of data and computational resources
may be limited.

An alternative approach for probabilistic forecasting is
to use Gaussian Processes (GPs), which have been used
to model load profiles of enterprises [4] and to residential
buildings [5].

GPs are collections of random variables that are jointly
Gaussian distributed for any finite subset. The random
variables are defined by a mean function and a covari-
ance function. The mean function is often assumed to be
zero, and the covariance function (or kernel) defines the
relationships between the random variables. Commonly

used kernel functions include the radial basis function
kernel, the Matérn kernel, and various periodic kernels.
Because all kernel functions must be positive definite,
the sum or product of multiple kernels is also a valid
kernel function.

By using GPs, the variability and heterogeneity in load
profiles can be captured while providing probabilistic
forecasts that account for uncertainty. This, inherent un-
certainty quantification of GPs, is useful for planning the
use of flexible loads and battery-energy-storage systems
at grid level as well as on local energy management
system level.

II. METHOD

A dataset of half-hourly load values spanning three
years (2011–2014) from 300 residential buildings in
Australia [6] serves as the basis for analysis. After
removing clients with faulty or missing data, a total of
54 clients remained. Using min–max normalization the
load values are scaled to the range 0–1.

To model the dataset GPs with a set of different
kernels are employed. The kernels including a radial
basis function kernel, the Matérn kernel, a periodic
kernel, and all possible combinations of these.

As regressors, the time of the week and previous
load values are used. The number of values from the
previous timesteps, commonly referred to as lags, is
varied. Using a single client at a time, we applied a time
series variation of k-fold cross-validation to evaluate the
performance of different GPs. The predictions are made
one step ahead, meaning the prediction is made for the
load 30 minutes ahead in time.

III. RESULTS AND DISCUSSION

Preliminary results show that the GPs can model
individual load profiles using only one previous load
value and the time of the week as regressors. The mean



absolute error is 0.0464, and the normalized Root mean
square error is 0.1041 with a radial-basis-function kernel;
similar results were obtained with other kernels.

The preliminary results show that GPs can model
individual load profiles with only a few weeks of data
and few regressors. Previous studies typically require
orders of magnitude more training data, but further
comparison and evaluation with probabilistic metrics are
still needed. These findings nonetheless indicate that GPs
are well-suited to personalized load forecasting when
available data are limited.

Making a fair comparison of any results with non-
probabilistic models is challenging as they lack any
calibrated uncertainties to benchmark against. A simi-
lar challenge occurs when comparing with models and
studies that use aggregated data, as aggregation generally
dampen peaks and smooths variability, masking the very
features a individualized model is designed to capture.
In theory, individualized GPs preserve - and explicitly
quantify - the heterogeneity of load profiles across
clients, offering richer information.

Future work will include implementing a
federated-learning approach to train GPs on multiple
clients without sharing sensitive electrical data. This
should enable better modelling at the individual client
level, leveraging shared knowledge, in addition to
providing accurate forecasting on a aggregated level,
e.g. for an entire apartment building or neighbourhood
- while using data from just a subset of residents.
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