
Robust Linear Quadratic Reinforcement Learning

Ludvig Svedlund and Bengt Lennartson

EXTENDED ABSTRACT

Knowledge about the dynamic behavior of a system is
crucial in the design of feedback control systems. This
knowledge is often based on system models, but also data
from physical experiments. Such experiments can be step
responses or time series analysis where the system is excited
by some type of random input signals, often in combination
with closed loop control. The controller is then adapted such
that the behavior of the closed loop system is improved,
naturally based on an online optimization procedure.

Model-free reinforcement learning: Reinforcement learn-
ing (RL) is a popular example of such an adaptive control
strategy. Either a system model is then estimated, and
based on this model a controller is designed. Alternatively,
a controller is directly determined such that an estimated
criterion is optimized. The first version is called model-
based RL, while the second one is called model-free RL
[1], [2], [3]. A special form of the model-free version is a
state feedback controller that is optimized given a traditional
linear quadratic criterion, among others formulated in [4],
[5]. In this design strategy, the state feedback controller is
determined based on experimental data, without knowing a
state-space model for the system to be controlled. Including
the correct state variables, the solution quickly converges to
exactly the same solution as the one obtained by solving a
Riccati equation based on a state-space model of the system
[6].

Low pass filtering when neglected dynamics is involved:
The focus of this paper is to evaluate what happens when
this linear quadratic RL (LQRL) strategy is applied to a
system where some dynamic behavior is neglected. Focusing
on mechatronic systems, a second-order DC motor is inves-
tigated as the nominal model with an additional resonance
or time constant as neglected dynamics. When the LQRL
strategy only includes feedback from the two nominal states
(motor angle and angular velocity), the learning procedure
and closed loop stability are shown to be surprisingly sen-
sitive to the unmodeled dynamics. Fortunately, low pass
filtering of the control and nominal state signals is shown
to significantly reduce the sensitivity to the unmodeled
dynamics.

Model-based reinforcement learning: An interesting alter-
native is to evaluate the robustness to unmodeled dynamics
in a corresponding model-based RL strategy. An ordinary
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least squares estimation of a second order state-space model
is then performed based on the two nominal states and the
control input signal. This strategy also works well without
filtering, but the model-free LQRL version, with significant
low pass filtering, sometimes obtains slightly better closed
loop performance compared to the model-based strategy.

The model-based LQRL version also has some other
benefits. The method is modularized in the sense that a
system model is first estimated, which can be easily evaluated
based on simple online experiments, such as step responses,
but also based on physical knowledge of expected dynamic
behavior. Model-free LQRL generates the final controller in
one step, more as a black-box strategy.

Output feedback reinforcement learning: Often not all
states are measured and then output feedback control is an
important and common alternative control strategy. Model-
free LQRL is then also shown to be a possible solution [7],
but it has a built-in high gain strategy also explained in this
paper. This high-gain behavior is less attractive especially
when the controlled system has higher-order dynamics. Es-
timating an input-output model in model-based RL is on
the other hand more simple than estimating a state-space
model, and any control design method can then be used,
including simple PID controllers and more advanced input-
output control strategies.

Nonlinear model-based reinforcement learning: Also very
importantly, a nonlinear model can be estimated, still very
often based on a linear parameter regression model. This
estimated nonlinear model can be locally linearized and
a complete nonlinear control strategy is easily achieved.
Furthermore, the convergence rate in model-based RL is less
sensitive to disturbances [8], and the sample complexity is
much more efficient in model-based compared to model-free
RL [9].

Summary: To summarize the main contributions of this
paper, it highlights the fact that traditional model-free LQRL
is very sensitive to unmodeled dynamics, which fortunately
can be greatly improved by low-pass filtering. The results are
based on a fair evaluation method, based on both closed loop
performance, control activity, and critical stability margins.
Comparing the filtered model-free RL approach with model-
based RL, the sensitivity to unmodeled dynamics is rather
similar for the two methods. Since the model-based RL strat-
egy, however, has other benefits such as being easier adapted
to output feedback and nonlinear dynamics, as well as having
much less sample complexity, it is strongly recommended as
a generic and robust adaptive control strategy.



Future research: For future research, it is recommended to
examine the impact when more complex systems and unmod-
eled dynamics are introduced. Especially, the introduction of
nonlinearities in the model-based approach will be compared
with model-free deep RL.
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