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Abstract—Online feedback optimization (OFO) refers to the
design of feedback controllers that guide a physical systems
toward the solution of an optimization problem, while enforcing
physical and operational constraints. The core idea of this control
paradigm is to re-purpose classic optimization algorithms as dy-
namic feedback controllers by integrating online measurements
from the physical plant. Unlike traditional optimization-based
controllers, these methods require minimal model knowledge,
no external set-points, and low computational effort, while
fully leveraging real-time data. Thanks to these advantages,
OFO has gained significant traction among researchers and
practitioners across diverse fields, including electrical power
grids, transportation systems, process control, and robotics.
Its effectiveness has been demonstrated through simulations,
experimental validation, and even industrial deployment on real
distribution grids. In this work, we present a general framework
for designing and analyzing OFO controllers, addressing key
challenges such as closed-loop stability, robustness, distributed
and decentralized designs, and practical implementation aspects.
Numerical simulation and hardware experiments in different
applications, including swarm robotics, multi-area transmission
grids, and recommender systems will be presented to demonstrate
the potential and generality of the proposed framework.

I. INTRODUCTION

Online feedback optimization (FO) [1] is an emerging con-
trol paradigm for optimal steady-state operation of complex
systems based on their direct closed-loop interconnection with
optimization algorithms. FO controllers can handle control
objectives beyond set-point regulation, typically tracking (a-
priori unknown) solution trajectories of time-varying con-
strained optimization problems. In recent years, FO controllers
have been proposed for a wide variety of problem settings [1]–
[7]. These can be categorized by the type of control objective
(e.g., convex or nonconvex) and constraints (e.g., hard or
soft), the dynamics of the plant (e.g., nonlinear, linear, or
algebraic), the type of algorithm (discrete or continuous-time),
and the stability analysis (e.g., continuous-time, discrete-time,
or hybrid), see [1] for a comprehensive list. FO has found
widespread application in various domains, including power
systems (e.g., for optimal power reserve dispatch [2], or fre-
quency regulation in AC grids [4]), communication networks
(e.g., for network congestion control [6]), and transportation
systems (e.g., for ramp metering control [7]).

In this work, we present feedback equilibrium seeking (FES)
[8], an extension of FO that seeks to drive pre-stabilized
dynamical systems to “efficient” operating points encoded
by time-varying generalized equations (GEs). GEs contain
constrained optimization as a special case and can model a
broad range of equilibrium problems (e.g., Nash, Wardrop).

Fig. 1. In feedback equilibrium seeking, measurements from a countinuous-
time dynamical system are incorporated into a discrete-time equilibrium
seeking algorithm resulting in a coupled sampled-data cyber-physical system.

Our contribution to this area of research is threefold:

(i) We propose a general framework for designing OFO
controllers for continuous-time pre-stabilized nonlinear
systems by tapping into a broad class of first- and second-
order discrete-time algorithms for generalized equations.

(ii) We derive sufficient conditions for stability and robust-
ness of the sampled-data algorithm-plant interconnection.

(iii) We showcase the utility of our framework by means of
numerical simulations on smart building [8], multi-area
transmission grids [9], recommender systems [10], and
via experiments with swarms of Crazyflie quadcopters.

II. PROBLEM STATEMENT

We consider the problem of efficiently operating a physical
plant described by the following nonlinear state-space system

ẋ(t) = f(x(t), u(t), w(t)), (1a)
y(t) = g(x(t), w(t)) (1b)

where x ∈ Lnx is the state, y ∈ Lny is the output, u ∈ Lnu is
the control input, with u(t) ∈ U for all t ∈ R≥0, and w ∈ Lnw

is a disturbance satisfying w(t) ∈ W for all t ∈ R≥0.
We adopt the “stabilize-then-optimize” paradigm, and as-

sume that (1) is stable and has a steady-state map p : U×W →



Rnx satisfying f(p(u,w), u, w) = 0 for all u ∈ U , w ∈ W and
a steady-state input-output map

h(u,w) = g(p(u,w), w). (2)

Our control objective is to design an output feedback con-
troller that drives (1) and maintain it near efficient operating
conditions. We encode “efficiency” using the following struc-
tured generalized equation (GE), parameterized by w ∈ W:

0 ∈ G(z, s) +A(z) (efficiency objective) (3a)
s = h(u,w), (steady-state map) (3b)
u = q(z), (ctrl state-to-input map) (3c)

where z ∈ Rnz is an auxiliary variable, s is the steady-state
output of (1), G : Rnz × Rny → Rnz is a single-valued
mapping, A : Rnz ⇒ Rnz is a set-valued mapping, and
q : Rnz → U is the output mapping.

III. METHODOLOGY

Our objective is to maintain the system (1) near efficient op-
erating points, namely, the solution trajectories s∗ = h(u∗, w)
of the GE in (3). Since (1) is pre-stabilized, selecting u(t) =
u∗(t) for all t ≥ 0 would cause (1) to approximately track the
desired steady-state s∗(t). However, computing u∗(t) requires
full knowledge of w(t) and evaluating the solution mapping
S(w(t)) which may be impossible and/or impractical. Instead,
we approach the problem by modifying an iterative algorithm
for solving the GE (3) with the following form

sk = h(q(zk), w), (4a)

zk+1 = T (zk, sk), (4b)

where T : Rnz ×Rny → Rnz is the algorithm, i.e., a rule for
generating the next iterate. This class of algorithms is abstract
and broad, including e.g. projected-gradient, SCP, and best-
response dynamics in strictly convex games.

By substituting (4a) in (4b), we can compactly cast the
algorithmic update rule (4) via the condensed parameterized
mapping T(·, w) : Rnz → Rnz , defined as

T(z, w) := T (z, h(q(z), w)). (5)

We assume that the nominal iteration (4) is locally convergent
and well-behaved in a parameterized setting.

If w(t) were fully measurable and the steady-state input-
output mapping h in (2) perfectly known, then u∗(t) could be
computed using (4). Instead, we construct an output feedback
controller by replacing the steady-state input-output model sk

in (4a) with online measurements yk obtained from the physi-
cal system (1). This creates an “online” feedback equilibrium
seeking process, where the system is directly integrated into
the algorithm, as illustrated in Figure 1.

IV. EXPERIMENTAL VALIDATION

This design framework has been validated via extensive
numerical simulations and real-world experiments. The ap-
plication explored include real-time coordination of swarms
of drones, voltage control in multi-area transmission grids
[9], supply-chain systems [8], recommender systems in social

Fig. 2. FES controller for temperature regulation in a smart building.
The comfort temperature (output) constraints are (approximately) satisfied
throughout the simulations, while heating and cooling effort is minimized.

networks [10], and temperature control in smart buildings [8].
A representative illustration for this last application is reported
in Figure 2.

V. CONCLUSION

Iterative algorithms for solving generalized equations, such
as Josephy–Newton, forward-backward splitting, can be used
as sampled-data robust feedback controllers for guiding com-
plex unknown dynamical systems to constrained and economic
equilibria. Under robust stability of the plant, strong regularity
of the generalized equation describing the control objective,
and robust convergence of the iterative algorithm, the sampled-
data algorithm-plant cyber-physical interconnection is locally
input-to-state stable with respect to unmeasured disturbances,
provided that the sampling period is appropriately designed.
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