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Abstract—This study provides a semi-analytical solution to
the charging optimization problem for electric vehicles, using
Pontryagin’s Maximum Principle (PMP). Explicit expressions for
the optimal solution not only enable faster trajectory computa-
tion than numerical optimization, but also reveal the solution’s
structure, increasing interpretability and theoretical insight.

I. PROBLEM FORMULATION

The vehicle is modeled as a nonlinear system with two
states, vector x, and three control inputs, vector u

x(t) =
[
Tb(t) SoC(t)

]⊺
(1)

u(t) =
[
Pb(t) Phvch(t) Php(t)

]⊺
(2)

where Tb and SoC are battery temperature and state of charge,
respectively. Pb is the battery internal chemical power, Phvch

is the High Voltage Coolant Heater (HVCH) power, and Php

is the Heat Pump (HP) power. Throughout the article, nested
parenthesis have been omitted for increased readability.

The battery pack is modeled as a series circuit between the
open circuit voltage Uoc and the battery’s internal resistance
Rb, which are modeled as in [1]. The state of charge is the
ratio between the available energy in the battery pack and its
nominal total energy. Its dynamics are described as

dSoC(t)

dt
= − Pb(t)

CbUoc(SoC)
(3)

which means that a negative Pb charges the battery.
The heat generated by Joule losses, Qjoule, the heat ex-

changed between the battery and the environment, Qamb, as
well as the portion of the HVCH power to heat up the cabin
compartment are modeled as in [1]. The heat provided to the
battery by the HVCH is modeled as

Qhvch(Phvch) = ηhvch · Phvch(t)− αhvch · (Phvch(t))
2 (4)

where ηhvch is the HVCH efficiency and αhvch is a small
coefficient which makes Qhvch quadratic in Phvch. To avoid the
HP channeling heat to the cabin when the battery temperature
is too low, while still avoiding points of non-differentiability,
the heat transfer can be modeled as a smoothed rectified linear
unit (ReLU). To that goal, we first define the smoothed step
function

σ(K) =
1

2

(
K√

K2 + ϵ2
+ 1

)
(5)

which tends to 1 if K ≥ 0 and to 0 otherwise. The transition
between 0 and 1, when K ≈ 0, becomes steeper the smaller
ϵ is. The heat transferred by the HP can then be modeled as

Qhp(Tb, Php) = fhp (Tb, Php) · σ(Tb− T thres
b ) (6)

All authors are with the Department of Electrical Engineering, Chalmers
University of Technology, Gothenburg 412 96, Sweden.

given

fhp (Tb, Php) = (pQhp,1Tb + pQhp,0)Php − αhpP
2
hp (7)

where pQhp,1 and pQhp,0 are coefficients obtained by fitting
data, αhp is a small coefficient to make Qhp quadratic in Php

and T thres
b is the minimum battery temperature needed to be

able to use the HP.
The battery has been modeled as a lumped mass with only

the battery temperature as a thermal state, which evolves
according to

dTb(t)

dt
=

1

cbmb

(
Qjoule(x,u) +Qhvch(Phvch)

−Qamb(Tb)−Qhp(Tb, Php)
) (8)

where cb is the heat capacity of the battery cells, mb is the
mass of the battery pack, and Cb is the battery capacity.

We can now define the charging optimization problem,
whose goal is to minimize the energy taken from the grid,
represented by the stage cost S, and the charging time,
represented by the terminal cost V

min
x,u,tf

J(x,u, tf) = wttf︸︷︷︸
V (tf )

+

∫ tf

t0

wePgrid(·)︸ ︷︷ ︸
S(·)

dt (9a)

s.t.: x(0) = x0, SoC(sf) = SoCdes (9b)
(8), (3), (9c)
Pb,min(x) ≤ Pb(t) ≤ 0 (9d)

xi ∈ [xmin
i , xmax

i ], i = 1, 2 (9e)

ui ∈ [umin
i , umax

i ], i = 1, 2, 3 (9f)

where w̃t is the penalty for charging time, we is the penalty for
energy bought from the grid, t0 is the starting time, tf is the
final time, Pgrid is the power taken from the grid, x0 ∈ R2 are
known initial conditions for the states, SoCdes is the desired
SoC level to be reached at the end of charging, Pb,min is a
lower bound for Pb as a function of the states, xmin

i , xmax
i ,

umin
i and umax

i are known box constraints on the states and on
the control inputs, respectively. Notice how SoC(tf) is known
while Tb(tf) is free.

The trajectories obtained by solving this problem numer-
ically will be used as benchmark and compared with those
described in sections (II).

II. PONTRYAGIN’S MAXIMUM PRINCIPLE (PMP)

The Pontryagin’s Maximum Principle [2] provides neces-
sary conditions that an optimal trajectory must fulfill. We
define two costates (one for each state)

λ(t) =
[
λTb

(t) λSoC(t)
]⊺

(10)



and the Hamiltonian of the problem in (9), defined according
to the theory of the PMP [3]

H(·) = S(·) + λTb
(t)

dTb(t)

dt
+ λSoC(t)

dSoC(t)

dt
. (11)

The optimality conditions can now be stated as

H(x∗,u∗,λ∗, t) ≤ H(x,u,λ, t), ∀t ∈ [t0, tf ], (12a)
dλ

dt
= −∇xH(·), (12b)

λTb
(tf)−

∂V ∗

∂x
= 0, H∗(tf) +

∂V ∗

∂tf
= 0. (12c)

where (12a) means that solving (9) is the same as minimizing
H , (12b) provides the dynamics of the costates and (12c) are
final conditions from PMP theory which hold because both tf
and Tb(tf) are free.

The optimal trajectory for the Pb can be found as the tra-
jectory that fulfills ∂H

∂Pb
= 0, since the goal is to minimize H .

Solving the equation for Pb, we get the optimal unconstrained
battery power

P ∗
b,uc(x,λ) =

cbmbλSoC(t)Uoc(SoC)

2Cb (λTb
(t) + cbmbwe)Rb(Tb)

. (13)

Analogously, the optimal trajectory for Phvch can be found
as the trajectory that fulfills ∂H

∂Phvch
= 0, which can be solved

for Phvch, since (4) is quadratic in Phvch, obtaining the optimal
unconstrained HVCH power

P ∗
hvch,uc(λTb

) =
ηhvchλTb

(t) + cbmbwe

2αhvchλTb
(t)

. (14)

Finally, the procedure to obtain an expression for the HP
power is analogous to the ones for the battery power and the
HVCH power, since Php enters H quadratically, thanks to
Qhp being quadratic in Php. However, this is not enough, as
∂2H
∂P 2

hp
is not always non-negative, meaning that simply solving

∂H
∂Php

= 0 does not necessarily lead to a minimum of H .

Instead, we need to also enforce ∂2H
∂P 2

hp
≥ 0. By doing that, we

obtain an expression for the optimal unbounded HP power

P ∗
hp,ub =

1

2σhp(Tb)
(

αhp we

ηQhvch
+

αhp λTb

cb mb

) ·
·

[
we

(
σhp(Tb) (Qhp,P0 +Qhp,P1 Tb)

ηQhvch
− 1

)
+

+
λTb

σhp(Tb) (Qhp,P0 +Qhp,P1 Tb)

cb mb

]
.

(15)

At any time instant, the control inputs are chosen so that H
is minimized. For Phvch and Php, three cases are considered:
unconstrained optimum (P ∗

hvch,uc and P ∗
hp,uc respectively),

lower bound and upper bound (in case the unconstrained opti-
mum goes outside the bounds). For Pb, only the unconstrained
optimum P ∗

b,uc and the lower bound Pb,min are considered,
since the upper bound would be either 0 or positive, which
should not happen during charging.
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Fig. 1. Comparison between IPOPT (continuous) and PMP (dashed)

The expressions for the unconstrained optimal control inputs
depend on the co-states, whose initial values we do not
have. We also need to compute the charging time to be
able to simulate the system. The unknowns to be found are
therefore ω =

[
λTb

(0) λSoC(0) tf
]⊺

. To compute these
three unknowns, a two-point boundary value problem defined
by (9b) and (12c) is solved numerically through Newton
method, starting from an initial guess and correcting it until
convergence. This 2PBVP is the only part that is solved
online, since the expressions for the optimal control inputs
are computed offline only once.

III. RESULTS AND CONCLUSIONS

Problem (9) was solved with IPOPT [4] through CasADi
[5] to obtain benchmark trajectories. Fig.1 shows an example
run where the states and the costates obtained with the PMP-
based method are compared with the benchmark ones. It can
be seen how the trajectories obtained with the two methods
are nearly identical. Table I shows some numerical results for
the same run, where it can be seen that the 2PBVP has been
solved correctly with the PMP-based method in significantly
less time than it took to solve the problem with IPOPT. This
shows that the PMP-based method not only is of theoretical
interest, since it uncovers the structure of the optimal solution,
but it also allows a much faster retrieval of said solution.

TABLE I
RESULTS COMPARISON BETWEEN IPOPT AND PMP

Exec time [ms] tf [min] λTb
(0) λSoC(0)

IPOPT 69.86 46.04 -3.3 -165.27
PMP 0.18 45.71 -3.51 -173.77
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