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Networked control systems (NCS) have recently attracted
considerable attention for their capability to integrate dis-
tributed sensors, actuators, and controllers over a shared
network infrastructure. This integration enables distributed
control, allowing system components to be physically sepa-
rated while still functioning as a cohesive unit. NCSs provide
multiple advantages, including reduced wiring complexity,
enhanced flexibility, and scalability. Despite these benefits,
incorporating wireless communication networks into control
loops introduces several challenges and constraints, such
as sampled data, narrow bandwidth, latency, fading, inter-
ference, packet dropouts, etc. In addition, in recent years,
the growing threat of cyberattacks has made NCS security
a major concern [1], [2], [3]. Malicious activities such as
malware injection and encryption key theft can compromise
data integrity, grant unauthorized access to remote control
centers, and ultimately degrade control loop performance or
even lead to instability and failure. Addressing these threats
requires a deep understanding of attack processes and their
consequences, as well as the adaptation of network control
strategies to mitigate them.

In this abstract, we consider nonlinear attacks, in which
an adversary accesses sensor data and applies a nonlinear
transformation to the measurement output. Consequently,
the closed-loop system becomes nonlinear, making stability
analysis nontrivial. Assuming that the nonlinearity belongs
to a class of local or integral quadratic constraints, we
provide frequency-domain conditions that guarantee absolute
stability, based on the Yakubovich quadratic criterion [4],
[5]. Additionally, to minimize the impact of stealthy attacks,
where an adversary aims to maximize their effect on system
performance by injecting an additive signal while remaining
undetected, we analyze the output-to-output gain [6], a
security metric that combines both performance impact and
attack detectability. Using dissipativity theory, we derive a
computationally efficient approach for estimating this metric.

We consider the following system:

¤𝑥p (𝑡) = 𝐴p𝑥p (𝑡) + 𝐵p𝑢(𝑡),
𝑦m (𝑡) = 𝐶m,o𝑥p (𝑡), 𝑦p (𝑡) = 𝐶p,o𝑥p (𝑡) + 𝐷p,o𝑢(𝑡),

(1)

where 𝑥p (𝑡) ∈ R𝑛𝑥 is the state vector, 𝑢(𝑡) ∈ R𝑛𝑢 is the
control input, 𝑦m (𝑡) ∈ R𝑛𝑦 is the measurement output, 𝑦p ∈
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Fig. 1: Nonlinear attack

R
𝑛𝑦p is the performance output, and 𝐴p, 𝐵p, 𝐶m,o, 𝐶p,o and
𝐷p,o are the matrices of appropriate dimensions, the pair
(𝐴p, 𝐵p) is controllable and the pair (𝐴p, 𝐶m,o) is observable.
Assume that the system is under a malicious attack, where an
adversary can access the sensor measurements and replace
the vector 𝑦m (𝑡) with 𝑦̃m (𝑡).

To estimate the state vector 𝑥p (𝑡) and design a feedback
based on it, we use the following observer-based state
feedback controller:

¤̂𝑥p (𝑡) = 𝐴p𝑥p (𝑡) + 𝐵p𝑢(𝑡) + 𝐾𝑦r (𝑡), 𝑢(𝑡) = 𝐿𝑥p (𝑡),
𝑦̂m (𝑡) = 𝐶m,o𝑥p (𝑡), 𝑦r (𝑡) = 𝑦̃m (𝑡) − 𝑦̂m (𝑡),

(2)

where 𝐾 ∈ R𝑛𝑥×𝑛𝑦 and 𝐿 ∈ R𝑛𝑢×𝑛𝑥 are the observer and
controller gains, respectively. Note that we use its resid-
ual output 𝑦r (𝑡), the difference between the measured and
predicted outputs, for an anomaly detector, which raises
an alarm if the residual becomes abnormally high. The
adversary’s goal is to degrade the performance, measured
by | |𝑦p | |𝐿2

, while simultaneously remaining undetected, i.e.,
keeping | |𝑦r | |𝐿2

small. The adversary can achieve this by
applying the nonlinear transformation 𝜑 to the measured
output 𝑦m while also injecting an additive signal Δ𝑦 = Γy𝑎(𝑡)
to the sensors’ output:

𝑦̃m (𝑡) = 𝜑
(
𝑦m (𝑡), 𝑡

)
+ Γy𝑎(𝑡), (3)

where 𝑎(𝑡) ∈ R𝑛𝑎 , Γy ∈ R𝑛𝑦×𝑛𝑎 , see Fig. 1. Then, the closed-
loop system (1) – (3) takes the following form:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝑞𝜉 (𝑡) + 𝐵𝑎(𝑡),
𝜉 (𝑡) = 𝜑(𝜎(𝑡), 𝑡), 𝜎(𝑡) = 𝐶m𝑥(𝑡)
𝑦p (𝑡) = 𝐶p𝑥(𝑡), 𝑦r (𝑡) = 𝐶r𝑥(𝑡) + 𝜉 (𝑡) + 𝐷r𝑎(𝑡),

(4)

where 𝑥 =

[
𝑥p

𝑥p − 𝑥p

]
, and 𝐴 =

[
𝐴p + 𝐵p𝐿 −𝐵p𝐿

𝐾𝐶m,o 𝐴p − 𝐾𝐶m,o

]
,

𝑞 =

[
0
−𝐾

]
, 𝐵 =

[
0

−𝐾Γy

]
, 𝐶m =

[
𝐶m,o, 0

]
, 𝐶p =[

𝐶p,o + 𝐷p,o𝐿, −𝐷p,o𝐿
]
, 𝐶r =

[
−𝐶m,o, 𝐶m,o

]
, 𝐷r = Γy.



A. Absolute stability

In this section, we provide frequency-domain conditions
guaranteeing absolute stability of the closed-loop system (4)
with 𝑎(𝑡) ≡ 0. We assume that the nonlinearity 𝜑 belongs
to some class 𝔐𝐹 = {(𝜎(𝑡), 𝜉 (𝑡))}, such that the functions
𝜉 (𝑡) and 𝜎(𝑡) satisfy the quadratic constraints

𝐹 (𝜉 (𝑡), 𝜎(𝑡)) ≥ 0

for all 𝑡 ≥ 0, where 𝐹 is a quadratic form with a symmetric

matrix 𝐹̄ =

[
𝐹11 𝐹12
∗ 𝐹22

]
∈ R2𝑛𝑦×2𝑛𝑦 . Note that the results

below are also valid for integral quadratic constraints (IQCs),
where the class 𝔐𝐹 is such that

∫ ∞
0 𝐹 (𝜉 (𝑡), 𝜎(𝑡)) 𝑑𝑡 ≥ 0.

Definition 1: The closed-loop system (4) is called min-
imally stable in a class 𝔐𝐹 if there exist a solution 𝑥(𝑡)
satisfying (𝜎(𝑡), 𝜉 (𝑡)) ∈ 𝔐𝐹 such that lim𝑡→∞ ∥𝑥(𝑡)∥ = 0.

Definition 2: The closed-loop system (4) is called abso-
lutely stable in a class 𝔐𝐹 if for any solution 𝑥(𝑡) satisfying
(𝜎(𝑡), 𝜉 (𝑡)) ∈ 𝔐𝐹 there exists a constant 𝑐1 > 0 such that
∥𝑥∥2

𝐿2
+ ∥𝜉∥2

𝐿2
≤ 𝑐1∥𝑥(0)∥

2
.

Theorem 1: Assume that the matrix 𝐶m (𝑠𝐼 − 𝐴)
−1
𝑞 does

not have poles on the imaginary axis, and the closed-loop
system (4) is minimally stable in the class 𝔐𝐹 . Then it is
absolutely stable if

𝐹̃ (𝑖𝜔, 𝜉) < 0, for all 𝜔 ∈ R and 𝜉 ∈ C𝑛𝑦 , 𝜉 ≠ 0, (5)

where the Hermitian form 𝐹̃ is the extension of the quadratic
form 𝐹 obtained as 𝐹̃ (𝑠, 𝜉) = 𝐹 (𝜉,−𝐺𝜉𝜎 (𝑠)𝜉).

B. Output-to-output gain

A security metric that combines both performance impact
and attack detectability was introduced in [6], [2], termed the
output-to-output gain (OOG). The OOG metric is formulated
as the optimal control problem:

𝑂𝑂𝐺 ≜ sup
𝑎∈𝐿2𝑒 ,𝜑∈𝔐𝐹

| |𝑦p | |
2
𝐿2
, s.t. | |𝑦r | |

2
𝐿2

≤ 1, 𝑥(0) = 0,

where 𝐿2𝑒 =

{
𝑎 : R+ → R𝑛𝑎

�� | |𝑎 | |𝐿2[0,𝑇 ]
< ∞, ∀𝑇 < ∞

}
. In

other words, the 𝑂𝑂𝐺 characterizes the adversary’s goal of
achieving maximum impact while avoiding detection. The
following theorem provides a computational approach to
estimating the 𝑂𝑂𝐺. The resulting linear matrix inequalities
(LMIs) ensure that the system (4) is strictly dissipative [7],
which, in turn, guarantees the boundedness of the 𝑂𝑂𝐺.

Theorem 2: Assume that there exist a matrix 𝑃 ≥ 0 and
scalars 𝜅 ≥ 0 and 𝛾 > 0 such that the LMI

Ψ0 (𝑃) + Ψ1 (𝛾) + Ψ2 (𝜅) ≤ 0 (6)

is feasible, where Ψ1 (𝛾) =

𝛾𝐶

T
p𝐶p − 𝐶T

r 𝐶r −𝐶T
r 𝑞r −𝐶T

r 𝐷r
∗ −𝑞T

r 𝑞r −𝑞T
r 𝐷r

∗ ∗ −𝐷T
r 𝐷r

 ,

Ψ0 (𝑃) =

𝐴

T
𝑃 + 𝑃𝐴 𝑃𝑞 𝑃𝐵
∗ 0 0
∗ ∗ 0

 , and Ψ2 (𝜅) = 𝜅

𝑟

T
𝐹22𝑟 𝑟

T
𝐹

T
12 0

∗ 𝐹11 0
∗ ∗ 0

 .
Then 𝑂𝑂𝐺 ≤ 1

𝛾
.

Finally, using the Kalman-Yakubovich-Popov (KYP) lemma
[8], [9], we provide frequency domain conditions that guar-
antee the upper bound for the OOG. Introduce the following
transfer matrices:

𝐺𝑎p (𝑠) = 𝐶p (𝑠𝐼 − 𝐴)
−1
𝐵, 𝐺𝑎r (𝑠) = 𝐶r (𝑠𝐼 − 𝐴)

−1
𝐵 + 𝐷𝑟 ,

𝐺𝜉p (𝑠) = 𝐶p (𝑠𝐼 − 𝐴)
−1
𝑞, 𝐺𝜉 r (𝑠) = 𝐶r (𝑠𝐼 − 𝐴)

−1
𝑞 + 𝐼,

𝐺𝑎𝜎 (𝑠) = 𝐶m (𝑠𝐼 − 𝐴)
−1
𝐵, 𝐺𝜉𝜎 (𝑠) = 𝐶m (𝑠𝐼 − 𝐴)

−1
𝑞.

Define also the matrix

Ψ(𝑠, 𝛾, 𝜅) =
[
Ψ11 (𝑠, 𝛾, 𝜅) Ψ12 (𝑠, 𝛾, 𝜅)

∗ Ψ22 (𝑠, 𝛾, 𝜅)

]
,

where

Ψ11 (𝑠, 𝛾, 𝜅) = 𝛾𝐺
∗
𝜉p (𝑠)𝐺𝜉p (𝑠) − 𝐺

∗
𝜉 r (𝑠)𝐺𝜉 r (𝑠)

+ 𝜅𝐹12𝐺𝜉𝜎 (𝑠) + 𝜅𝐺
∗
𝜉𝜎 (𝑠)𝐹

T
12

+ 𝜅𝐺∗
𝜉𝜎 (𝑠)𝐹22𝐺𝜉𝜎 (𝑠) + 𝜅𝐹11,

Ψ12 (𝑠, 𝛾, 𝜅) = 𝛾𝐺
∗
𝜉p (𝑠)𝐺𝑎p (𝑠) − 𝐺

∗
𝜉 r (𝑠)𝐺𝑎r (𝑠)

+ 𝜅𝐺∗
𝜉𝜎 (𝑠)𝐹22𝐺𝑎𝜎 (𝑠) + 𝜅𝐹12𝐺𝑎𝜎 (𝑠),

Ψ22 (𝑠, 𝛾, 𝜅) = 𝛾𝐺
∗
𝑎p (𝑠)𝐺𝑎p (𝑠) − 𝐺

∗
𝑎r (𝑠)𝐺𝑎r (𝑠)

+ 𝜅𝐺∗
𝑎𝜎 (𝑠)𝐹22𝐺𝑎𝜎 (𝑠).

Theorem 3: Assume that the matrix 𝐴 is Hurwitz stable,
the pair (𝐴, [𝑞 𝐵]) is controllable, and there exist scalars
𝜅 ≥ 0 and 𝛾 > 0 such that

Ψ(𝑖𝜔, 𝛾, 𝜅) ≤ 0 ∀𝜔 ∈ R, (7)

and
𝛾𝐶

T
p𝐶p − 𝐶

T
r 𝐶r + 𝜅𝑟

T
𝐹22𝑟 ≥ 0. (8)

Then 𝑂𝑂𝐺 ≤ 1
𝛾

.
Remark 1: If the pair (𝐴, [𝑞 𝐵]) is controllable and

det(𝑖𝜔𝐼 − 𝐴) ≠ 0, then, from the KYP lemma, it follows
that the condition (7) is necessary for the feasibility of the
LMI (6).
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