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I. INTRODUCTION

Motion planning is a crucial component of any robotic
application, such as manipulators, UAVs, and Autonomous
Vehicles (AVs). Although much work has been dedicated to
this topic, arguably, the most difficult challenge still remains,
safely dealing with humans. The difficulties stem from the
fact that human movement is notoriously challenging to
model, can depend on the robots’ own motion, and can be
inherently uncertain. On a high level, one may decompose
this uncertainty into two components; 1.) Motion uncertainty,
e.g., “Is the humans’ velocity 1.0m s−1 or 1.1m s−1?” 2.)
Decision uncertainty, e.g., “Will the human stop or go
through the intersection?”. In this work we explore Learning-
based Distributionally Robust Optimization (LB-DRO) as a
solution for deriving safety guarantees for motion planning
with uncertain human decisions, by modeling humans as
Markov Decision Processes (MDP) with a discrete set of
a priori know policies. Our work is suitable for treating
safety when the decision uncertainty is the primary cause
of concern, e.g., when an AV needs to interact with a human
driver at an intersection. Note that the work is not final; we
are currently finalizing the proofs and a simulation study that
we look forward to presented at the conference.

II. LEARNING-BASED DISTRIBUTIONALLY ROBUST
OPTIMAL CONTROL PROBLEM

Consider a decision vector u ∈ U ⊆ Rnu and a random
vector y : Y 7→ Ω ⊆ Rny with probability measure p⋆ on
the measurable space (Y,Ω). In addition, consider a random
cost function J(u,y) : U×Y 7→ R and a vector of random
constraints g(u,y) : U×Y 7→ Rng . LB-DRO concerns itself
with solving problems of the following structure,

inf
u

sup
p∈Pθ

{
Rp [J(u,y)]

∣∣∣ sup
p∈Pθ

Rp [g(u,y)] ≤ 0

}
(1)

where Rp is some risk measure and Pθ is an “ambiguity
set” of probability measures that depends on some learnable
parameters θ. The goal of the learning problem is to find a
Pθ that contains p⋆ with high probability, i.e., P [p⋆ ∈ Pθ] ≥
1− α for some α ∈ [0, 1]. [1].

A. Prior Work

Existing work [2], [3] have extended the LB-DRO frame-
work to a predictive multistage setting over a discrete time
horizon k = 0, 1, . . . , N . Crucially, they consider Y =
{0, . . . , ny} as a discrete set of possible decisions for a
human at each time k. The random decisions y are modeled
as a discrete-time Markov chain by treating a transition

kernel p⋆ = (p⋆
ij)i,j∈Y where p⋆

ij = P [y = yj |y = yi]. To
learn the transition kernel they rely on a Sample Average
Approximation (SAA) by collecting t measurements of y in
an online-fashion,

p̂i,j(t) := θi,j(t) =
1

t

t∑
i=1

1[y(t)=yi,y(t−1)=yj ] (2)

where 1 is an indicator function. Assuming that the Markov
Chain is ergodic and that we may obtain i.i.d. measurements
of y, one may utilize uniform convergence properties of p⋆

to construct an ambiguity set as follows,

Pθ =

{
p
∣∣ ||p− p̂(t)||1 ≤

√
n2
y log 2− α

t

}
(3)

where P[p⋆ ∈ Pθ] ≥ 1 − α. In this setting, [2], [3]
considers the Conditional Value-at-Risk (CVaR), i.e. Rp[·] =
CVaRp[·], and performs extensive derivations to transform
(1) into a tractable multistage LB-DRO problem. All details
cannot be covered here, but a particularly crucial step is to
enumerate all possible combinations of y over the prediction
horizon to construct a scenario tree. The problem is finally
solved in a receding horizon fashion where the solution u⋆

yields the AV control actions e.g., acceleration and steering.

B. Our Contribution

Indeed, the above SAA approach is restrictive and cannot
be used to treat interactive motion planning, as the depen-
dence of p⋆ is limited to the previous actions of the human
driver via y(t − 1). In this work, we develop theoretical
results for conditional distributions p⋆

i = P[y = yi|x] where
x = [xAV,xh] contains continuous state variables for the AV
and human, e.g. position and velocity. To maintain the i.i.d.
assumption, we consider an offline learning setting where
we obtain measurements for humans interacting with another
vehicle in a specific driving scenario, e.g., an intersection.

III. MACHINE LEARNING PROBLEM

A. Basic Definitions

We consider a classification problem with random vari-
ables y ∈ Y = {0, 1, . . . , ny}, x ∈ X ⊆ Rnx with joint
distribution (x,y) ∼ D. In this setting we may describe the
joint distribution as,

D := F ⋆
θ (x,y) = P (x)f⋆

θ (y|x) (4)

where θ ∈ Rnx are parameters and P (x) is the state
distribution. We assume to obtain n i.i.d. samples from D and
construct a training set Dtrain = {xi, yi}ni=1 with the aim of



learning the conditional distribution using an empirical risk
minimizer f̂θ(y|x) (ERM). To this end, we define a risk
measure utilizing the cross-entropy, i.e,

RD(f̂θ) = EF⋆
θ

[
− log F̂θ

]
= H(F ⋆

θ , F̂θ) (5)

where H(p, q) notes the cross-entropy between two distribu-
tions p, q. To minimize (5) we consider an empirical estimate
of the risk,

Rn(f̂θ) =
1

n

n∑
i=1

1y=yi

[
− log

(
f̂θ(y = yi,x = xi)

)]
(6)

where 1y=yi is an indicator function for y = yi.

B. Excess Risk Bounds

Much work has been dedicated to deriving bounds on the
excess risk for many different machine learning algorithms.
Such bounds commonly take the following form,

P
[
RD(f̂θ)−RD(f

⋆
θ ) ≤ r(n, α)

]
≥ 1− α (7)

for some r(n, α) ≥ 0, depending on the number of samples
n, and some α ∈ [0, 1]. Similarly to the vast majority of
learning-based DRO approaches, most such risk bounds rely
on uniform convergence, which we may state more formally
with the following assumption.

Assumption 1 (Uniform Convergence): Consider some
risk measure RD with empirical estimator Rn, and some
estimator f̂θ of the distribution f⋆

θ . Uniform convergence
then implies that,

lim
n→∞

P
[∣∣Rn(f̂θ)−RD(f

⋆
θ )
∣∣ > ϵ

]
= 0. (8)

for some ϵ ≥ 0.
Bounds of the type (7) are additionally challenging in the

setting of Section III-A, since the risk is unbounded, but may
be obtained under uniform convergence by imposing addi-
tional constraints on the random variable x and the learnable
weights θ. Different approaches, e.g., VC-dimensions [4],
Rademarcher complexity [5] or PAC-Bayes bounds [6], yield
different constraints with varying restrictiveness in different
applications. Note that our approach is flexible with regards
to the choice of bound, and may be adapted based on the
application.

C. Problem Formulation

For completeness we present a case where y ∈ {−1, 1} is
conditionally Bernoulli distributed as,

f⋆
θ (y|x) = Ber

(
σ(⟨x, θ⟩)

)
(9)

where σ(t) = 1
1+exp(t) and the parameters θ are unknown.

In this setting, we use a Rademarcher complexity bound
by additionally considering X = {x | ||x|| ≤ B} and
the parameters θ ∈ Θ = {θ | ||θ|| ≤ R}. The ERM is
now obtained from the following constrained optimization
problem,

f̂θ = argmin
fθ

Rn(fθ), s.t. θ ∈ Θ (10)

The Rademarcher complexity bound then gives the following
result.

Proposition 1 (Excess Risk bound): Consider the learn-
ing problem in Section III-A with X = {x | ||x|| ≤ B},
Θ = {θ | ||θ|| ≤ R}. Under Assumption 1, we may bound
the excess risk as,

RD(f̂θ)−RD(f
⋆
θ ) ≤ r(α, n) =

4BR√
n

+6

√
log(2/α)

2n
(11)

which holds with a probability larger or equal to 1− α.
Proof: Application of [5], details cannot fit in this format.

IV. LB-DRO WITH AMBIGUITY SETS FROM EXCESS
RISK

We now present our main result, deriving a valid ambiguity
set for a conditional distribution using excess risk bounds.

Proposition 2 (Conditional Ambiguity Set from Excess Risk):
Consider the setting of Section III-A with a well defined
bound on the excess risk, such as in (10). For a given
realization of the random variable x = xi and an estimated
conditional distribution p̂θ(xi) = f̂θ(y|xi) ∈ (0, 1)2, we
propose the following ambiguity set.

Pθ(xi) =
{
p
∣∣DKL

(
p||p̂θ(xi)

)
≤ η

(
r(α, n)

)}
where p ∈ (0, 1)2,

∑
i pi = 1 and the following probabilis-

tic guarantee holds,

P [f⋆
θ (y|xi) ∈ Pθ(xi)] ≥

(
1− r(α, n)

η
(
r(α, n)

)) (1− α)

where η(r) is a function such that,

lim
r→0

η(r) = 0, lim
r→0

1− r

η(r)
= 1

Proof: Details cannot fit in this format.
With derivations similar to [2], [3] we are then able to

obtain a tractable multistage LB-DRO problem that can treat
a much more extensive family of distributions p⋆.

V. CURRENT AND FUTURE WORK

Our current efforts are focused on finalizing a demonstra-
tion for an intersection scenario in which a human driver
and an AV need to negotiate crossing priority. There is
also plenty of exciting future work including formulating
recursive feasibility, treating online learning, and treating
more complex learning methods, e.g., small neural networks.
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