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I. INTRODUCTION
The rapid growth of electric vehicles (EVs) is reshaping

transportation and energy systems, significantly increasing
global electricity demand. With bidirectional technologies,
concepts such as vehicle-to-grid (V2G) and vehicle-to-home
(V2H) are emerging, enabling EVs to act as energy nodes
that support grid services and enhance home energy manage-
ment [2]. Despite its potential, V2G and V2H face concerns
over battery degradation and vehicle availability. Research
has addressed energy management for V2G and V2H mainly
through offline optimization [3], [4], assuming full knowl-
edge of future data and often neglecting or simplifying bat-
tery aging models. Recent online optimization efforts [5], [6]
improve adaptability but still rely on simplified degradation
representations and do not comprehensively integrate V2G,
V2H, battery dynamics, and household uncertainties.

To address the identified gaps, this work proposes a
nonlinear online optimization algorithm, aiming to minimize
user costs through dynamic energy trading. Considering a
single user owning both an EV and a house, the algorithm
operates online by processing data as it arrives. A hybrid
long short-term memory (LSTM) neural network predicts
household load to improve real-time energy allocation, while
a detailed battery model captures both calendar and cycle
aging. This approach enables sustainable and cost-effective
energy management for EV owners in real-world scenarios.

II. METHODOLOGY
The vehicle-home-grid integration considered, shown in

Fig. 1, involves three actors: an EV, a house, and the power
grid. The EV can supply energy to both the grid (V2G) and
the house (V2H), while grid-to-vehicle (G2V) covers EV
charging. The house can also receive energy directly from
the grid through grid-to-home (G2H).

A. Vehicle-Home-Grid Control
While the EV is parked, an optimization problem is

formulated to minimize the user cost for energy trading and
battery degradation:

min
∑
t

ECt +BCt + st, (1)
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Fig. 1. Vehicle-home-grid interaction of the proposed algorithm. The
arrows indicate the allowable energy flows for V2H, V2G, G2V and G2H.

where t represents time, st is a slack variable for a soft
constraint related to the EV’s SoC at the pickup time,
and ECt and BCt denote the energy and battery costs,
respectively.

ECt and BCt can be calculated by

ECt = (EG2V
t + EG2H

t ) · pt − EV 2G
t · γ · pt, (2)

BCt =NV · BDt(%)

100%− EoL(%)
, (3)

where the energy flows are expressed in kWh, and pt is
the day-ahead energy price, expressed in C/kWh. Energy
costs arise from purchasing energy from the grid for G2V
and G2H, minus the profits from selling energy to the grid
(V2G). γ is the price ratio, representing the ratio between
the selling price and the buying price of energy. If γ = 1, it
means the buying and selling prices are equal. In (3), BDt

is the battery degradation in percentage of the initial battery
capacity, EoL is the battery capacity at the end of life, and
NV is the net value of the battery.

The optimization problem in (1) is subject to constraints
that ensure the non-negativity of energy flows, respect the
limits imposed by the EV charger, and maintain the battery
state of charge (SoC) within operational bounds. A soft
constraint guarantees the desired SoC level at pickup times.

B. Battery Model

An empirical model for lithium-iron-phosphate batteries is
employed to describe the degradation characteristics, includ-
ing both calendar and cycle aging [7]. The calendar aging
is a function of temperature, SoC and time in hours. The
cycle aging is a function of temperature, energy throughput,
current and SoC. The total battery degradation BDt, defined
as the capacity loss in percentage, is computed as sum of



calendar and cycle aging at each time step by

BDt=BDcal
t +BDcyc

t . (4)

All the details of the model, including the parameters, their
derivation, and detailed formulas, can be found in [7].

C. Household Load Prediction and Management

In real-world scenarios, future household load is highly
uncertain due to weather conditions and user behavior. To
address this, a real-time household load predictor based on
a hybrid long short-term memory (LSTM) neural network
is developed. The hybrid LSTM approach is adopted from
[8] to incorporate additional features that influence energy
consumption, providing the model with more contextual
information and improved prediction accuracy.

The hybrid LSTM predicts the household load one hour
ahead. Four features are extracted from a chosen dataset: f1)
the previous 24 hours of energy consumption, forming the
input sequence for the LSTM; f2) day of the year; f3) day
of the week; f4) hour of the day. The features f2, f3, f4
are fed into a dense neural network.

The architecture used has been extensively studied in [8].
Since our output is limited to a single hour of prediction, to
predict multiple hours, we use the neural network recursively,
where the output of each prediction becomes the input for
the next.

III. RESULTS AND DISCUSSION
Simulations were conducted for two distinct scenarios to

evaluate user costs in the vehicle-home-grid integration:
A. Vehicle-home-grid integration, as formulated in (1).
B. Unidirectional smart charging (benchmark): This sce-

nario seeks to minimize costs, including battery degra-
dation, without employing V2G and V2H technologies.

With the price ratio γ = 1, meaning the price for purchas-
ing and selling energy is identical, Table I summarizes the
user costs for the two scenarios. Here, the user’s final cost
(FC) is calculated as the sum of the energy cost (EC) and
battery cost (BC).

TABLE I
USER COSTS AND BATTERY DEGRADATION FOR SCENARIOS A AND B.

FC EC BC BD BDcal BDcyc

[C] [C] [C] [%] [%] [%]

A -1070.21 -1739.38 669.17 5.42 2.26 3.16
B 1976.60 1549.12 427.48 3.46 2.72 0.75

By comparing scenarios A and B, it can be observed
that the vehicle-home-grid integration provides a substantial
economic advantage of C3046.81 annually for the user in
the final cost. Specifically, scenario A degrades the battery
by 1.96% more but reduces the energy costs by C3288.50
compared to scenario B.

The results above assume a price ratio γ = 1, but different
values of γ may significantly affect the final cost FC due to
changes in the energy cost EC. Fig. 2 shows the final cost
FC for scenarios A and B across a range of γ values from
0 to 1.

Fig. 2. FC for scenario A and B varying the price ratio γ.

In scenario B, the cost curve remains constant due to
unidirectional charging. In scenario A, as γ decreases, FC
increases since the reduced price difference between buying
and selling makes V2G less profitable. At γ = 0.75, FC =
0, eliminating electricity-related costs. When γ = 0, V2G is
no longer performed as it offers no benefit; however, V2H
continues, contributing to self-consumption, still yielding
savings over scenario B.

Overall, these results demonstrate that vehicle-home-grid
integration consistently offers benefits: even in the worst-case
scenario, the user saves around C425 annually.

IV. CONCLUSION
This work demonstrates that vehicle-home-grid integration

with nonlinear online optimization and hybrid LSTM load
prediction offers substantial economic benefits compared to
traditional smart charging. Simulations show up to C3046.81
annual savings, despite slightly higher battery degradation.
Even under unfavorable conditions, V2H alone ensures con-
sistent cost reductions. Additional sensitivity analyses con-
firm that the proposed method remains advantageous across
different energy price scenarios, battery sizes, and household
loads, highlighting its real-world applicability.
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