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I. INTRODUCTION

With growing availability of 5G connectivity, more and
more applications can reap the benefits of wireless connec-
tivity. One promising feature is that connected devices will
be able to offload computationally expensive processes to
edge computers. For industrial mobile robots, the 5G Al-
liance for Connected Industries and Automation (5G-ACIA)
highlights the possibility to offload real-time localization as
an important use case for edge computing [1].

At the same time, offloading localization means the robots
have to stream sensor data over the network, which would
not scale if all robots send all their data simultaneously. Fur-
thermore, the way the robot is controlled affects localization
performance, so both communication and control must be
taken into account. Such application-specific co-design for
dynamic resource allocation is an important step towards
enabling factory-scale edge computing [2].

In this work, we use localization uncertainty to quantify
the performance, since it is a relevant metric when control-
ling the robot in safety-critical scenarios. In Fig. 1 we show a
robot that has to avoid an unsafe region detected by external
sensors while navigating towards the goal. The position is
estimated using an offloaded particle filter, and the current
estimated position is illustrated with yellow spots. Since the
robot does not know its true position, in order to stay safe
the robot either needs to communicate more to reduce the
spread, or change its control.

A. Contribution

Recent works on so-called perception-based control [3],
[4], [5], [6], [7] have proposed different safe control methods
that compensate for uncertainties in state due to sensor-based
state estimation, but these do not consider the option to adjust
communication. In Fig. 2, our proposed system architecture
is shown, introducing co-optimization of navigation speed
v and communication frequency f based on an uncertainty
requirement Ureq. We generate the uncertainty requirement
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Fig. 1: A robot is navigating based on an offloaded particle
filter localization, and needs to avoid the unsafe region based
on the particle belief.

such that if it is satisfied, we also fulfill the particle belief
safety condition proposed in [7].

We implement two versions of this optimization, one
where the requirement Ureq is based only on the current
position xt, and one also using a part of the path plan. Since
we have no analytical model for how localization uncertainty
depends on frequency and speed we will use experimental
data to obtain a model ∆(f, v).

II. METHOD AND RESULTS

Based on the risk-aware safety measure in [7], we compute
the localization uncertainty using the empirical conditional
value at risk. For a set of N samples yi of a scalar random
variable ordered in ascending order, and with normalized
weights wi ≥ 0,

∑N
i=1 wi = 1, is defined as:

CVaRα({(yi, wi)}Ni=1) =

∑N
i=k wiyi∑N
i=k wi

, (1)

where k = argmin
1≤j≤N

K∑
i=j

wi ≤ 1− α, (2)

for some α ∈ [0, 1]. Essentially, this is the empirical mean
of the N −k worst samples. To get a scalar measure for our
particle distribution {(xi, wi)}, we first compute the distance
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Fig. 2: The system architecture, with proposed components
in yellow and existing functionality in blue.
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Fig. 3: Shows box plots generated from all the data collected
for the uncertainty model grouped by frequency f and color
coded by speed v.

of each particle xi from the mean x̂ =
∑N

i=1 xiwi, and then
use α = 0.8 to compute the mean distance of those particles.

To model the localization uncertainty, we perform ex-
periments with a simulated mobile YuMi in Gazebo.
The nominal frequency of the LiDAR is 15Hz, and
we run experiments with 5 different trajectories for
each combination of frequencies and speeds (f, v) ∈
[15Hz, 7.5Hz, 5Hz, 3.75Hz, 3Hz] × [1.0, 0.75, 0.5, 0.25].
We save the uncertainty right before each measurement
update to reflect the worst possible uncertainty expected for
each setting. The resulting distributions of uncertainties is
shown in Fig. 3. We then use this model in an optimization
problem to choose f and v online based on the worst
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Fig. 4: Current and worst predicted requirements, Ureq(t)
and Ûreq(t) respectively, are shown with the localization
uncertainty U(t) in the upper plot. The model values ∆(f, v)
are also shown, based on f and v in the lower plot.

predicted uncertainty Ûreq within 5 seconds:

min
(f,v)∈F×V

C(f, v), (3)

subject to ∆(f, v) ≤ Ûreq. (4)

This method is evaluated in experiments at WARA Robotics,
and the results are shown in Fig. 4.

III. CONCLUSIONS AND FUTURE WORK

We proposed a co-design approach to choose communica-
tion frequency and navigation speed for a robot navigating
with offloaded localization. In future work, we both want
to improve the data-driven modeling and consider other
problem formulations that do not explicitly require a model
to guarantee safety. Further, we want to scale the problem to
multiple robots and do experiments in a real 5G network.
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