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I. INTRODUCTION

Consider the following discrete-time LTI system in the
predictor form:

xk+1 = AKxk +Kyk, (1a)
yk = Cxk + ek. (1b)

The main focus of this work is to estimate system’s dynami-
cal matrix AK in a statistically optimal way using input and
output data {uk, yk}N̄k=1 from a single trajectory.

Subspace identification methods (SIMs) [1] have proven
to be very useful and numerically robust for estimating state-
space models. However, they are in general not believed to
be as accurate as the prediction error method (PEM) [2].
Conversely, PEM, although more accurate, comes with non-
convex optimization problems and therefore requires local
non-linear optimization algorithms and good initialization
points. A more recent weighted null space fitting (WNSF)
[3] approach is able to combine some advantages of the two
aforementioned mainstream approaches, being numerically
robust and achieving asymptotic efficiency for many struc-
tured models. In this work, we extend the WNSF approach
for estimating state-space models for multivariate time-
series. For simplicity, we use SISO systems for illustration.
For a full version of this work, see [4].

II. THE WEIGHTED NULL-SPACE FITTING METHOD

There are multi-step least-squares in the WNSF method.
Step 1 (High Order AR Modeling): Based on the

predictor form (1), the output is given by

yk = C(qI −AK)
−1
Kyk + ek =

∞∑
i=1

giyk−i + ek, (2)

where predictor Markov parameters gi = CAi−1
K K. After

selecting a sufficient large order n, equation (2) is truncated
to a high order AR (HOAR) model

yk ≈
n∑

i=1

giyk−i + ek = gnyn(k) + ek, (3)

where yn(k) =
[
y>k−1 y>k−2 · · · y>k−n

]>
and gn =[

g1 g2 · · · gn
]
. An estimate of the first n Markov

parameters is
ĝn = rnR

−1
n , (4)
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where rn := 1
N

N∑
t=1

yky
>
n (k)y, Rn := 1

N

N∑
k=1

yn(k)y>n (k)

and N = N̄−n+1. Moreover, assuming the truncation bias
of the HOAR model is negligible, which should be close to
zero for sufficient large N̄ , the asymptotic distribution of the
estimation error can be approximated as

√
N(ĝn − gn) ∼ AsN

(
0, σ2

eR̄
−1
n

)
, (5)

where R̄n := Ē
[
yn(k)y>n (k)

]
.

Step 2 (Ordinary Least-Squares): With the non-
parametric HOAR model in Step 1, we proceed to show
how to get a parametric state-space model in the following
Steps 2 and 3. According to the Cayley-Hamilton theorem,
for matrix AK , we have

Anx

K + a1A
nx−1
K + · · ·+ anx−1AK + anx

I = 0, (6)

where {ai}nx

i=1 are coefficients of the characteristic polyno-
mial of matrix AK . The extended observability matrix is then
given by

Γnx
=
[
C> (CAK)

> · · · (CAnx

K )
>
]>

, (7)

where rank (Γnx) = nx, and dim
(
Null(Γ>nx

)
)

= 1. Using
equation (6), we have[

anx
anx−1 · · · a1 1

]
Γnx = 0, (8)

i.e., the left null space of Γnx
is fully parameterized by

the coefficients {ai}nx

i=1. moreover, a canonical realization
of matrix AK is obtained using the these coefficients. For
simplicity of illustration, we define

a :=
[
anx anx−1 · · · a1

]
. (9)

Similar to the Ho-Kalman algorithm, we construct a Han-
kle matrix from the first n Markov parameters:

Hnxn :=


g1 g2 · · · gp
g2 g3 · · · gp+1

...
...

. . .
...

gnx+1 gnx+2 · · · gn

 :=

[
H+

nxn

H−nxn

]
,

(10)
where the column number p = n − nx. It is well known
that the above Hankel matrix is the product of the extended
observability matrix and controllability matrix, i.e.,

Hnxn = Γnx
Lp. (11)

where Lp is the extended controllability matrix. The above
Hankel matrix satisfies rank(Hnxn) = nx. A key observation
is that the null space of the extended observability matrix



Γnx
is also the null space of the Hankle matrix Hnxn, i.e.,[

a 1
]
Hnxn = 0, which implies

aH+
nxn +H−nxn = 0. (12)

Since we have estimates of Markov parameters {gi}ni=1

from Step 1, after constructing Hnxn from these Markov
parameters, an initial estimate of a is given by OLS as:

âols = −Ĥ−nxn(Ĥ+
nxn)>

(
Ĥ+

nxn(Ĥ+
nxn)>

)−1

. (13)

Step 3 (Weighted Least-Squares): Now we refine our
initial estimate âols by using the distribution of (ĝn − gn)
obtained in Step 1. The residual of aĤ+

nxn + Ĥ−nxn is

aĤ+
nxn + Ĥ−nxn −

(
aH+

nxn +H−nxn

)
= (ĝn − gn)Tn(a),

(14)
where Tn(a) is a Toeplitz matrix of a. According to (5), we
conclude that the distribution of the residual is

√
N(ĝn − gn)Tn(a) ∼ AsN

(
0, Λ̄n(a)

)
, (15)

where Λ̄n(a) = σ2
eT >n (a)R̄−1

n Tn(a). Taking Λ̄−1
n (a) as

the optimal weighting, and replacing a and R̄n with their
consistent estimates âols and Rn, we refine the estimate with
WLS

âwls =− Ĥ−nxnΛ̄−1
n (âols)(Ĥ

+
nxn)>×(

Ĥ+
nxnΛ̄−1

n (âols)(Ĥ
+
nxn)>

)−1

.
(16)

Same as the WNSF for ARMAX model, replacing a with
its consistent estimate âols will not affect the asymptotic
optimality of âwls, we therefore conjecture that âwls is
asymptotically efficient.

III. SIMULATIONS

In this section, we provide one SISO system and one
MIMO system to demonstrate the performance of WNSF
with respect to state-of-the-art methods. For the implemen-
tation of SIMs and PEM involved in the comparison, we use
the corresponding versions in System Identification Toolbox
in MATLAB R2021a. Moreover, the PEM is initialized with
the true parameters.

A. A Single-Output System

Consider the following ARMA model:

yk + ayk−1 = ek + cek−1,

where a = −0.8 and c = 0.9, and the innovation ek ∼
N (0, 1). We show that WNSF is asymptotically efficient for
estimating the matrix AK , which in our case is the parameter
c. We perform 500 Monte Carlo trails, with sample size N ∈
{300, 600, 1000, 3000}, order of the high order AR model
n ∈ {30, 40, 50, 60}, and past and future horizons of SIMs
f = p ∈ {5, 6, 7, 8}, respectively. The performance shown
in Figure 1 is evaluated by the mean-squared error (MSE) of
the parameter c. As we can see, with the increase of sample
size N , the MSE of WNSF approaches the CRLB closely
and is competitive with PEM. Moreover, two representative
SIMs, SSARX and N4SID are not comparable with WNSF.
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Fig. 1. MSE of parameter c from 500 Monte Carlo trials.
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Fig. 2. MSE of coefficients a from 500 Monte Carlo trials.

B. A Multiple-Output System

Consider a MIMO state-space model (1) with the follow-
ing system matrices:

A =

[
1 −0.4
1 0

]
,K =

[
2.45 −1.05
2.95 −0.65

]
, C =

[
1 0
2 1

]
.

The innovation ek ∼ N (0, I). We show the performance of
different methods for estimating the coefficients of character-
istic polynomial for AK , i.e., the vector a =

[
−1.3 0.845

]
.

We perform 500 Monte Carlo trails, with sample size N ∈
{2000 : 2000 : 10000}, order of the high order AR model
n ∈ {40 : 10 : 80}, and past and future horizons of SIMs
f = p ∈ {10 : 2 : 18}, respectively. The performance shown
in Figure 2 is evaluated by the MSE of the vector a. As
shown, with the increase of sample size N , the MSE of
WNSF approaches the MSE of PEM and the CRLB, and
performs better than SSARX and N4SID.
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