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I. INTRODUCTION

This work investigates closed-form feedback control designs
under time-varying output constraints, a critical aspect of
nonlinear control systems essential for ensuring tracking and
stabilization performance as well as safety requirements. Ex-
isting closed-form feedback methods addressing time-varying
constraints fall into three primary categories: Funnel Control
(FC) [1], Prescribed Performance Control (PPC) [2], and
Time-Varying Barrier Lyapunov Function (TVBLF) methods
[3]. Typically, these control methods are used to attain user-
defined transient and steady-state performance for tracking and
stabilization errors in nonlinear dynamical systems. Despite
various successful applications, these methods have limita-
tions in managing couplings among multiple time-varying
constraints. FC, PPC, and TVBLF can only enforce funnel-
type constraints (e.g., −ρi(t) < ei < ρi(t)) on independent
states or errors, inherently resulting in decoupled constraints
representing box-shaped sets in output or error spaces. How-
ever, practical scenarios frequently require addressing arbitrary
and potentially coupled time-varying output constraints, par-
ticularly for safety or spatiotemporal specifications [4].

In response, we propose a novel feedback control strategy
designed to satisfy potentially coupled time-varying output
constraints for uncertain, high-relative degree MIMO nonlinear
systems. Inspired by [4], our method integrates all time-
varying constraints into a single consolidated constraint. To
ensure compliance with this unified constraint, we introduce a
robust yet low-complexity control approach motivated by [5].
Importantly, this method avoids relying on approximations or
parameter estimation schemes for handling uncertainties. Ad-
ditionally, by adaptively updating the consolidated constraint
online, our solution achieves a least violating solution if the
constraints become infeasible over unknown time intervals.

Unlike FC, PPC, and TVBLF, our method effectively han-
dles both generic asymmetric funnel-type and one-sided time-
varying constraints, thus addressing broader spatiotemporal
specifications. Moreover, while conventional methods require
initial satisfaction of all output constraints, our approach
guarantees convergence to and the invariance the output-
constrained set within a user-defined finite time, even from
initially infeasible conditions. This extended abstract summa-
rizes recent results reported in [6].
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II. PROBLEM FORMULATION

Consider high-relative degree uncertain nonlinear MIMO
systems described as:

ẋi = fi(t, x̄i) +Gi(t, x̄i)xi+1, i ∈ {1, . . . , r − 1},
ẋr = fr(t, x̄r) +Gr(t, x̄r)u,

y = h(t, x1),

(1)

where xi ∈ Rn, x̄i := [x⊤1 , . . . , x
⊤
i ]

⊤ ∈ Rni, u ∈ Rn, and
y ∈ Rm. Functions fi and matrices Gi are locally Lipschitz
and unknown and h is a C2 map in x1 and C1 in t. Moreover,
for each fixed x̄i, entries of fi and Gi are bounded for all
t ≥ 0. Similarly, elements of h are bounded for all t ≥ 0
when x1 is fixed. The output y must satisfy generalized time-
varying constraints:

ρ
j
(t) < hj(t, x1) < ρj(t), ∀t ≥ 0, (2)

where j ∈ {1, . . . ,m}, and ρ
j
(t), ρj(t) are bounded and

continuously differentiable. Note that (2) describes funnel
constraints (when both ρ

j
(t) and ρj(t) exist), upper one-

sided constraints (if only ρj(t) exists), and lower one-sided
constraints (if only ρ

j
(t) exists).

Note that the output constraints specified in (2) depend
on x1, which signifies the spatial coordinates (positions) of
mechanical systems. Moreover, the output map h(t, x1) is
employed only to model various types of spatiotemporal con-
straints for the nonlinear dynamics (1). In our work, h(t, x1)
is not necessarily related to the available measurements of the
system and we assume all states of (1) can be measured.

Let Ω̄(t) represents the time-varying output constrained set
that include all constraints in (2):

Ω̄(t) := {x1 ∈ Rn | ρ
j
(t) < hj(t, x1) < ρj(t)}. (3)

Our goal is to design a low-complexity continuous robust
feedback control law u(t, x) for (1) such that x1(t;x(0), u)
satisfies the time-varying output constraints (2) ∀t > T ≥ 0,
where T is a user-defined finite time after which the out-
put constraints are satisfied for all time (i.e., x1(t;x(0)) ∈
Ω̄(t),∀t > T ≥ 0). Note that this problem reduces to estab-
lishing only invariance of Ω̄(t) for all t ≥ 0, if x1(0) ∈ Ω̄(0)
(T = 0). On the other hand, having x1(0) /∈ Ω̄(0) indicates
establishing: (i) finite time convergence to Ω̄(t) at t = T , and
(ii) ensuring invariance of Ω̄(t), for all t > T .

III. CONTROLLER DESIGN METHODOLOGY

To encode all different types of time-varying constraints in
(2) into a single constraint, first, we rewrite all constraints in
(2) in the form ψj(t, x1) > 0 where

ψj(t, x1) = hj(t, x1)− ρ
j
(t) or ρj(t)− hj(t, x1). (4)



Using the Log-Sum-Exp function, we define

α(t, x1) = −1

ν
ln

(
m+p∑
i=1

e−νψi(t,x1)

)
≤ min{ψ1(t, x1), . . . , ψm+p(t, x1)},

(5)

where p denotes the funnel-type constraints in (2). Clearly,
α(t, x1) > 0 at time t ensures all time-varying constraints
are satisfied at t. Thus, the consolidated constraint for (1) is
defined as:

α(t, x1(t)) > ρα(t), ∀t ≥ 0, (6)

where ρα(t) is suitably designed (see [6] for details) to
guarantee finite-time convergence to and/or invariance of the
time-varying constrained set Ω̄(t) for t ≥ T . Specifically,
if α(0, x1(0)) > 0 (constraints initially satisfied) and all
constraints in (2) remain feasible (i.e., Ω̄(t) nonempty) at all
times, one may choose ρα(t) = 0. For potentially infeasible
constraints (i.e., Ω̄(t) in (3) may temporarily become empty),
online tuning of ρα(t) is crucial. In such cases, we propose an
estimation scheme for α∗(t) := maxx1∈Rn α(t, x1) ≤ ᾱ∗(t),
where a positive value of α∗(t) indicates the feasibility of
Ω̄(t). Fig. 1 demonstrates the satisfaction of (6) under possible
constraint infeasibility in (2). In Fig. 1, ϱ(t) serves as a
nominal lower bound for (6), while α̂ denotes the estimate of
α∗(t). The lower bound ρα(t) exhibits adaptive behavior: it
follows the desired nominal profile until the estimation signal
conflicts with ϱ(t). Thereafter, enforcing (6) along closed-loop
trajectories yields a least-violating solution.

To establish the satisfaction of (6) along closed-loop tra-
jectories of (1), a low-complexity (i.e., approximation-free)
backstepping-like closed-form state feedback is designed as
follows. First, define the error eα(t, x1) = α(t, x1) − ρα(t)
and apply a nonlinear transformation:

ϵα(t, x1) = ln
(eα
υ

)
. (7)

where υ is a tunable positive constant. To ensure constraints
satisfaction, a time-varying barrier function-based virtual con-
trol is introduced:

s1(t, x1) = −k1
ϵα
eα

∇x1α(t, x1). (8)

where k1 > 0 is a control gain. Then inspired by [5] we define
recursively: ei(t, x̄i) = xi − si−1(t, x̄i−1), i = 2, . . . , r,
and target enforcing narrowing intermediate funnel constraints
−ϑi,j(t) < ei,j(t, x̄i) < ϑi,j(t), i ∈ {2, . . . , r}, j ∈
{1, . . . , n}, for all t ≥ 0, where ϑi,j(t) := (ϑ0i,j −
ϑ∞i,j) exp(−li,jt) + ϑ∞i,j to practically compensate the errors
ei,j . The following intermediate control laws ensure practical
error compensation:

si(t, ei) = −kiΞiϵi, (9)

where ϵi transforms the normalized errors:

ϵi,j = ln

(
1 + êi,j
1− êi,j

)
, êi,j =

ei,j
ϑi,j(t)

. (10)

and Ξi := diag(ξi,j) :=
∂εi(êi)
∂êi

∂êi(t,ei)
∂ei

∈ Rn×n is a diagonal
matrix. Finally, the robust low-complexity feedback controller
is designed as: u(t, x) = sr(t, x).
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Fig. 1: The evolution of α(t, x1(t;x(0))) under the consolidating constraint
(6), under temporary infeasibility of the time-varying constraints.

 
 

 

 
 
 
 
 
 
  

Fig. 2: Time-varying region tracking of a mobile robot.

To demonstrate the effectiveness of the proposed approach,
we consider a region tracking problem for a mobile robot
subject to both feasible and temporarily infeasible constraints,
while ensuring robustness to dynamic uncertainties and exter-
nal disturbances. Fig. 2 illustrates the simulation results.
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