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1 Introduction

The cyclic pursuit problem, which dates back to 1877, has
attracted the interest of mathematicians for over a century.
In cyclic pursuit, n bugs chase one another in cyclic order.
Since the early 2000s, there has been renewed interest in
studying cyclic pursuit from a control perspective, particu-
larly for decentralized control of autonomous agents. In [1],
Marshall et al. consider nonholonomic vehicles (modeled as
kinematic unicycles) under cyclic pursuit, each traveling at a
fixed common forward speed. By employing a steering law
where each vehicle’s angular velocity is proportional to its
bearing relative to its prey, the vehicles eventually converge
to equally spaced circular motion. Depending on their bear-
ing spacing (on the circle), there are 2n− 1 equilibrium for-
mations. Local stability analysis of these equilibrium forma-
tions is presented, revealing which formations are stable and
which are not. Following the studies in [1], Zheng et al. [2]
proposed a new control law to ensure certain collective be-
haviors. It is guaranteed that only two equilibrium forma-
tions are locally asymptotically stable, where the vehicles
are equally spaced on a circle in cyclic order, either clock-
wise or counterclockwise.

Most existing research has shifted its focus toward achiev-
ing a desired formation on the circle. The desired formation
includes specific bearing spacing, the direction of circular
motion, and optionally the circle’s center, radius, or both.
Additionally, the topology is no longer limited to cyclic pur-
suit but extends to more general topologies, including di-
rected graphs. In [3], a dynamic control law is developed
such that the vehicles converge to a desired circular motion,
prescribed by a bearing spacing, a stationary center, and a ra-
dius. Global convergence is guaranteed, and the center is the
root of the topology. Similar results within the cyclic pursuit
framework are developed in [4]. In this work, however, the
agent dynamics are described by natural Frenet frame equa-
tions rather than kinematic unicycles.

To go beyond prior studies that focus on equally spaced
or prescribed-spacing circular motion, we aim to achieve a
more general form of circular motion–free-spacing circular
motion, where the bearing spacing is not constrained. We
first establish the geometric constraints for vehicles moving
on a common circle and then propose a control law that en-
ables free-spacing circular motion. A local stability analysis
is provided for the case n ≤ 3, offering insights into the
stability properties of the more general case with n > 3.

2 Cyclic Pursuit Model

Consider cyclic pursuit of n vehicles, where vehicle i ∈
I = {1, 2, . . . , n} pursues the next i + 1 vehicle. The vehi-
cles are modeled as kinematic unicycles: ẋi = v cos θi, ẏi =
v sin θi, θ̇i = ωi, in which v > 0 is a fixed forward speed,
zi = [xi, yi]

⊤ ∈ R2 denotes the position of vehicle i, θi ∈ R
the orientation, and ωi ∈ R the angular velocity to be de-
signed.

The vehicles only have access to relative measurements,
which motivates the use of relative coordinates. Let ρi de-
note the distance between i and its prey i+ 1, αi denote the
bearing from i’s heading to the heading that would take it
directly towards its prey, and βi := θi − θi+1 − π denote the
heading difference between i and its prey minus π. After al-
gebraic manipulations, the motion equations of these relative
variables are obtained as:

ρ̇i = −v (cosαi + cos (αi + βi)) , (1a)

α̇i =
v

ρi
(sinαi + sin (αi + βi))− ωi, (1b)

β̇i = ωi − ωi+1. (1c)

Denote ξi = [ρi, αi, βi]
⊤ and ξ = [ξ⊤1 , ξ⊤2 , . . . , ξ⊤n ]⊤.

Note that
∑n

i=1 zi+1 − zi = 0. By choosing a coordinate
frame attached to vehicle 1 and oriented with vehicle 1’s
heading, this equality gives rise to the following coordinate
constraints:

g1(ξ) := ρ1 sinα1 + ρ2 sin (α2 + π − β1) + . . .

+ ρn sin (αn + (n− 1)π − β1 − β2 − . . .− βn−1) = 0,

g2(ξ) := ρ1 cosα1 + ρ2 cos (α2 + π − β1) + . . .

+ ρn cos (αn + (n− 1)π − β1 − β2 − . . .− βn−1) = 0.

On the other hand, due to cyclic pursuit
∑n

i=1 β̇i(t) = 0,
it follows

∑n
i=1 βi(t) ≡ c, where the constant c = −nπ

by the definition for βi, which gives a final coordinate con-
straint: g3(ξ) :=

∑n
i=1 βi + nπ = 0 mod 2π. These con-

straints are essential for equilibrium stability analysis.

Definition 1 Given a team of vehicles in cyclic pursuit de-
scribed by (1). We say that the vehicles perform a coordi-
nated circular motion if they move on a common circle.

Definition 2 An arrangement refers to the relative ordering
of the vehicles on the circle.

Definition 3 An arrangement is said to be regular if the ve-
hicles are distinctly spaced along the circle in cyclic order,
following the direction of motion.



Proposition 1 A coordinated circular motion occurs if and
only if: (i) It holds that

∑n
i=1 βi + nπ = 0 mod 2π; (ii)

It holds that αi + (αi + βi) = π mod 2π, ∀i ∈ I; (iii)
2 sinαi/ρi = 1/r ̸= 0, ∀i ∈ I. |r| is the radius of the circle.
ω̄ = v/r is the identical angular velocity of the vehicles.
The direction of the motion is indicated by the sign of r. It is
counterclockwise if r > 0; otherwise, it is clockwise.

To achieve coordinated circular motion, we propose the
following control law with k ̸= 0:

ωi =
v

ρi
2 sinαi +

k

ρi
(cosαi + cos (αi + βi)) . (2)

Substituting (2) into (1) yields a cyclically interconnected
system of identical nonlinear subsystems, which are omitted
for brevity. View these subsystems as ξ̇i = f(ξi, ξi+1) and
view the complete system as ξ̇ = f̂(ξ). We discuss the possi-
ble equilibrium formations of ξ̇ = f̂(ξ) in the following the-
orem, where ξ̄ = [ξ̄⊤1 , ξ̄⊤2 , . . . , ξ̄⊤n ]⊤ with ξ̄i = [ρ̄i, ᾱi, β̄i]

⊤

represents an equilibrium point.

Theorem 1 The equilibria of systems (1) with the control
(2) can be categorized into two formations,
(i) the first formation Ml ⊂ R3n is given by

Ml =

{
ξ̄ ∈ R3n|

n∑
i=1

ρ̄i cos ᾱi = 0

}
∩ (3){

ξ̄ ∈ R3n|ᾱi = 0 mod π, β̄i + π = 0 mod 2π, ∀i ∈ I
}
,

such equilibria correspond to collinear motion, i.e., the ve-
hicles advance on a straight line;
(ii) the second one Mc ⊂ R3n is given by

Mc =

{
ξ̄ ∈ R3n|

n∑
i=1

β̄i + nπ = 0 mod 2π

}
∩ (4){

ξ̄ ∈ R3n|2ᾱi + β̄i = π mod 2π,
sin ᾱi

ρ̄i
= s̄ ̸= 0, ∀i ∈ I

}
,

such equilibria correspond to coordinated circular motion,
i.e., the vehicles have identical angular velocity of ω̄ = 2vs̄.

Free-spacing circular motion is feasible under the equilib-
rium formation Mc, as ᾱi is not fixed.

Denote ξ̃i = ξi − ξ̄i, then linearizing the system about an
equilibrium point ξ̄ gives rise to n identical linear subsys-
tems of the form ˙̃

ξi = Aiξ̃i +Bi+1ξ̃i+1, where

Ai =

 0 2vs̄iρ̄i vs̄iρ̄i
0 2ks̄i − 2vc̄i ks̄i − vc̄i

−2vs̄i/ρ̄i 2vc̄i − 2ks̄i −ks̄i

 ,

Bi+1 =

 0 0 0
0 0 0

2vs̄i+1/ρ̄i+1 2ks̄i+1 − 2vc̄i+1 ks̄i+1

 ,

s̄i = sin ᾱi/ρ̄i, c̄i = cos ᾱi/ρ̄i.

Denote ξ̃ = ξ− ξ̄, then the complete linearized system has

the form ˙̃
ξ = Âξ̃, where

Â =


A1 B2

A2 B3

. . . . . .
An−1 Bn

B1 An

 . (5)

3 Stability Analysis

By studying the kernel space of the matrix Â, we can di-
rectly draw a conclusion on the stability of the equilibrium
points in the set Ml.

Theorem 2 Every equilibrium point ξ̄ ∈ Ml are unstable.

Lemma 1 The matrix Â has at least n + 1 zero eigenval-
ues w.r.t. the equilibrium formation Mc. These eigenvalues
can be disregarded when determining the stability of Â w.r.t.
Mc.

On the other hand, let g(ξ) = [g1(ξ), g2(ξ), g3(ξ)]
⊤, then

M = {ξ ∈ R3n|g(ξ) = 0} ⊂ R3n defines a manifold in
R3n.

Lemma 2 The manifold M is invariant under f̂ .

Then, since the manifold M is invariant under f̂ , the tan-
gent space Tξ̄M at every equilibrium point ξ̄ ∈ M is invari-
ant under f̂ . Therefore, there exists a change of coordinates
for R3n that transforms Â into block upper-triangular form[

ÂTξ̄M ∗
03×(3n−3) Â⋆

Tξ̄M

]
.

Lemma 3 In the quotient space R3n/Tξ̄M, the induced lin-
ear transformation Â⋆

Tξ̄M : R3n/Tξ̄M → R3n/Tξ̄M has
solely imaginary eigenvalues λ1 = 0 and λ2,3 = ±j2vs̄
w.r.t. the equilibrium formation Mc.

Thus, we conclude that the matrix Â w.r.t. Mc has at least
n + 3 imaginary-axis eigenvalues that can be disregarded.
Thus, the equilibrium points in Mc are locally asymptoti-
cally stable if the remaining eigenvalues have negative real
parts.

Theorem 3 Consider a equilibrium formation Mc with n ≤
3, an equilibrium point ξ̄ ∈ Mc that corresponds to a regu-
lar arrangement is locally asymptotically stable if ks̄ < 0.
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