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Abstract— In this paper, we provide a brief overview of our
recent results on set-invariance methods for the systematic
controller design for dynamic systems subject to spatiotemporal
constraints. Our work includes the synthesis of value functions
that characterize the system’s dynamic capabilities with respect
to a constraint, the synthesis of controllers that render time-
varying sets forward invariant and we show how such results
can be used to handle spatiotemporal logic tasks.

I. INTRODUCTION

Spatiotemporal logic constraints are a rich class of con-
straint specifications that allow us to encode state and time
constraints, and combine these with each other via logic
operators. For example, a specification for a team of three
mobile robots within this class could be as follows (see
Fig. 1): Two out of the three robots shall meet at some time
between 10 and 20s, and each of the robots shall move within
50s to their assigned blue box while avoiding collisions with
other robots and any of the obstacles.

1. Two robots meet (1&2, 2&3 or
1&3) at some time between 10 and 
20s

2. Robots are in blue boxes for all 
times >50s

3. Never enter red areas or collide

Example:

Fig. 1: Motivating example with schematic solutions
sketched using trajectories and, alternatively, invariant sets.

There exist various methods to solve spatiotemporal logic
problems. Most of them compute a trajectory (e.g. based on
finite transition systems or RRT˚) that complies with the
constraint specification and is afterwards followed using a
tracking controller. While yielding sometimes a type of op-
timality, the computation of feasible trajectories is generally
time-consuming. This renders such approaches rather static
and unresponsive to changes in the constraint specifications.

As an alternative approach, spatiotemporal logic con-
straints can be also encoded into forward invariant time-
varying sets. While still requiring some planning effort,
the degrees of freedom from the constraint specifications
can, at least partly, be preserved and are not reduced to a
single trajectory as in the first approach. This gives such
approaches an increased flexibility to account for changes in
the specifications online.
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Fig. 2: Summary of the decoupled synthesis of time-
varying CBFs. An example for the bicycle model is provided.

II. BACKGROUND

In the sequel, we consider dynamic systems of the form

9x “ fpx, uq, xp0q “ x0 (1)

with x P Rn subject to spatiotemporal logic constraints, and
input constraint u P U Ď Rm; f is assumed to be Lipschitz-
continuous and the solutions forward complete. An often
employed formalism to express spatiotemporal constraints is
Signal Temporal Logic (STL), which entails

‚ state constraints in terms of predicates, e.g. p : hpxqě0;
‚ temporal operators, namely that a state constraint shall

be always (Gra,bsp) or eventually (Fra,bsp) satisfied on
a time interval ra, bs, or that a constraint p1 shall be
satisfied until another constraint p2 eventually holds on
a time interval ra, bs;

‚ logic operators as AND (^), OR (_) and NOT (␣).
For a more formal introduction of STL, we refer to [1]; an
exemplary STL specification is given in Fig. 3 as ψ0.

Inspired by [2], many works encode STL specifications
into forward invariant sets, mostly using Control Barrier
Functions (CBF). A CBF with respect to system (1) defined
on a domain D Ď Rn is a differentiable function b : D Ñ R
with

sup
uPU

"

db

dt
pxq fpx, uq

*

ě ´αpbpxqq @x P D (2)

where α denotes an extended class Ke function. For encoding
STL specifications, CBFs of the form

Bpt, xq – bpxq ` λptq (3)

are of particular interest. However, even if b itself constitutes
a CBF, it is not guaranteed that the CBF property (2) is
preserved when adding a time-varying function λ.

In the remainder, we briefly outline a systematic design
process for constructing CBFs, before turning towards an
extension of the framework in [2] that additionally allows to
encode disjunctions (logic OR) based on non-smooth CBFs.



Fig. 3: Overview over the controller design: from a given STL specification to the controller.

III. SYNTHESIS OF TIME-VARYING CBFS

For the systematic construction of CBFs of the form (3), b
must be chosen from a special class of CBFs. In particular,
we require b to be a CBF that preserves CBF property (2)
under the shift induced by the time-varying function λ. For
this reason, we call such CBFs shiftable CBFs.

Definition 1 (Λ-shiftable CBF). A continuously differen-
tiable function b : Rn Ñ R is called a Λ-shiftable CBF
with respect to (1) for Λ ą 0 if there exists an extended
class Ke function α such that b satisfies (2) on a domain
CΛ – tx | bpxq ě ´Λu.

Theorem 1. Let α be convex or concave, and let λ : Rě0 Ñ

r0,Λs satisfy

Bλ

Bt
ptq ě αp´λptqq.

Then, B is a CBF on the domain Rě0 ˆ CΛ with respect to
system (1) augmented with time.

This result is a corollay of [3, Theorem 4] and allows
for the decoupled synthesis of b and λ. This gives rise to
an entire class of uniformly time-varying CBFs. In [4], a
systematic method to synthesize shiftable CBFs is presented;
a python implementation of the method is available. The
method also yields an explicit characterization of the function
α that takes a crucial role in the design of time-varying
functions λ. By employing equivariances in the system
dynamics, the computational effort for the CBF synthesis can
be reduced as shown in [5]. A summary of our synthesis
approach to time-varying CBFs can be found in Fig. 2.
The synthesized CBFs can be then composed (under certain
conditions) to larger CBFs. An example is depicted in
the right half of Fig. 2 for two input-constrained bicycle
models (a more and a less agile one) including simulation
results for time-varying constraints. The example is taken
from [4]. Special composition rules are required for STL
specifications.

IV. NON-SMOOTH CBFS FOR STL INCLUDING
DISJUNCTIONS

The previous results on the synthesis of time-varying CBFs
enable us to encode a rich fragment of STL comprising a
broad variety of spatiotemporal logic constraints into CBFs.
The considered specifications include, in contrast to earlier
works such as [2], also disjunctions. This requires us to
employ non-smooth CBFs. An overview over our proposed
controller design as by [6] is given in Fig. 3. Starting with
a given STL specification, we first derive its corresponding
STL-tree, which is then translated to a CBF tree encoding
the original STL specification. Thereby, a set of specific
construction rules is employed. For instance, specifications
employing the always (G) or eventually (F) operators are
encoded into functions of the form bpxq ` λptq. To ensure
that these functions indeed constitute CBFs, we can employ
the results from Theorem 1. By investigating each of the
branches of the CBF-tree, we note that each of them repre-
sents a differentiable function. Only their composition via the
minimum and the maximum operators renders the resulting
function non-smooth. Thus, the non-differentiable points can
be determined analytically by identifying those points, where
the functions represented by the branches equal each other.
The knowledge on the non-smooth points can be exploited
to compute control inputs via Dini derivatives.

REFERENCES

[1] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 152–166.

[2] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE Control Systems Letters, vol. 3, no. 1,
pp. 96–101, 2019.

[3] A. Wiltz and D. V. Dimarogonas, “From time-invariant to uniformly
time-varying control barrier functions: A constructive approach,” in
2024 IEEE 63rd Conference on Decision and Control (CDC), 2024.

[4] ——, “Predictive synthesis of control barrier functions and its applica-
tion to time-varying constraints,” 2025, under review.

[5] ——, “Leveraging equivariances and symmetries in the control barrier
function synthesis,” 2025, in preparation.

[6] ——, “Handling disjunctions in signal temporal logic based control
through nonsmooth barrier functions,” in 2022 IEEE 61st Conference
on Decision and Control (CDC), 2022, pp. 3237–3242.


