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I. Motivation
The ubiquitous implementation of Cyber-Physical Systems

(CPSs) and the potential to remotely cause physical damage
makes them attractive to cyber-attacks. In those attacks, adver-
saries primarily target the communication networks, intercept-
ing the communication between the plant and the controller.

Traditionally, cyber-attacks are classified by three dimen-
sions: confidentiality (concealment of information), integrity
(trustworthiness of data), and availability (ability to use infor-
mation or resources). More recently, [2] defined an attack space
for cyber-physical systems, spanned by model knowledge, dis-
closure, and disruption resources. In this paper, we focus on
disclosure attacks, in which an adversary gathers sensitive in-
formation from the controller, thus breaking its confidentiality.
Disclosure attacks can be part of a larger attack scheme, where
the attacker initially remains hidden until it uses its disruptive
resources. These disruptions, such as denial of service or false
data injection attacks, then compromise the integrity and avail-
ability of the information in the CPS.

Stealthy attacks pose a great threat to CPSs, where stealthi-
ness refers to the attacker not triggering any alarm while pos-
sibly causing damage. To stay undetected, the attacker must re-
construct or manipulate the state in the anomaly detector, which
in turn requires knowledge of internal controller states.

Figure 1: An attacker performs a confidentiality attack by reading control in-
puts to the plant 𝑢[𝑘]. It uses a Kalman filter or a UIO to estimate the controller
states 𝑥𝑐[𝑘]. An anomaly detector raises an alarm if such an attack is detected.

In a control loop such as the one shown in Figure 1, there are
two links in the communication network that an attacker can
target: plant measurements 𝑦[𝑘] for sensor attacks and control
inputs 𝑢[𝑘] for actuator attacks. In this work, we consider the
case of an actuator attack, which poses an extraordinary threat
to the CPS due to its direct connection to the plant.

II. Problem formulation
We consider a linear discrete-time plant and controller setup,

where the two parts are interconnected in feedback by the plant

measurements 𝑦[𝑘], controller inputs 𝑢[𝑘], plant states 𝑥[𝑘], and
controller states 𝑥𝑐[𝑘]. We further assume that the closed-loop
system is internally stable.

𝑥[𝑘 + 1] = 𝐴𝑥[𝑘] + 𝐵𝑢[𝑘] + 𝑤[𝑘]
𝑦[𝑘] = 𝐶𝑥[𝑘] + 𝑣[𝑘]

↑ 𝑢[𝑘] 𝑦[𝑘] ↓
𝑥𝑐[𝑘 + 1] = 𝐴𝑐𝑥𝑐[𝑘] + 𝐵𝑐𝑦[𝑘]

𝑢[𝑘] = 𝐶𝑐𝑥𝑐[𝑘] + 𝐷𝑐𝑦[𝑘]

We consider the problem where an adversary tries to gain ac-
cess to the controller states using the control inputs 𝑢[𝑘]. We
write the problem description as follows:

Estimation problem
Estimate 𝑥𝑐[𝑘] by 𝑥𝑐[𝑘] perfectly:

1. without bias: 𝔼[𝑥𝑐[𝑘] − 𝑥𝑐[𝑘]] = 𝔼[𝑒[𝑘]] = 0.
2. with zero steady-state error covariance:

lim
𝑘→∞

𝔼[𝑒[𝑘] 𝑒[𝑘]⊤] = lim
𝑘→∞

Σ𝑐[𝑘] = 0.

The attacker has an initial covariance Σ𝑐[0] ≻ 0 and access
to controller inputs to the plant 𝑢[𝑘].

In this work, we use two attack strategies to solve the estima-
tion problem. For the first attack strategy, we adapt the proce-
dure from [3], in which a sensor attack was performed using a
Kalman filter. The second attack strategy is utilizing tools from
delayed system inversion, i.e., using an Unkown Input Observer
(UIO) to perform a delayed estimate of the controller states.

III. Strategy #1: Kalman Filter
To be able to apply the Kalman filter, we first combine the

plant and controller states 𝑧[𝑘] = [𝑥[𝑘]⊤𝑥𝑐[𝑘]⊤]
⊤

, and then
construct the closed-loop state-space system with

𝑧[𝑘 + 1] = 𝐴𝑧𝑧[𝑘] + 𝛼[𝑘],  where (1)

𝐴𝑧 = [
𝐴 + 𝐵𝐷𝑐𝐶

𝐵𝑐𝐶
𝐵𝐶𝑐

𝐴𝑐
], 𝛼[𝑘] = [

𝑤[𝑘] + 𝐵𝐷𝑐𝑣[𝑘]
𝐵𝑐𝑣[𝑘]

].

We can also write 𝑢[𝑘] = 𝐶𝑧𝑧[𝑘] + 𝛽[𝑘] with the closed-loop
output matrix 𝐶𝑧 = [𝐷𝑐𝐶 𝐶𝑐] and noise 𝛽[𝑘] = 𝐷𝑐𝑣[𝑘]. Due
to the random noise, the closed-loop state is a random vari-
able. The conditional probability distribution of the closed-loop
states 𝑧[𝑘 + 1] given a sequence of control inputs {𝑢[𝑖]}𝑘

𝑖=0 un-
der the influence of random noise, reads as

𝑧[𝑘 + 1 | {𝑢[𝑖]}𝑘
𝑖=0] ∼ 𝒩(𝑧[𝑘 + 1], Σ𝑧[𝑘 + 1]).

The Kalman filter is an unbiased estimator, which means that
𝔼[𝑧[𝑘]] = 𝑧[𝑘]. Therefore, to estimate the controller states per-



fectly, we need to show that the steady-state covariance Σ∞ is
of the following form

lim
𝑘→∞

Σ𝑧[𝑘] = Σ∞ = [𝑃
0

0
0],  with 𝑃 ≽ 0. (2)

A steady-state covariance of this form implies zero covariance
for the estimate of the controller states, lim𝑘→∞ Σ𝑐[𝑘] = 0.

To be able to obtain an error covariance of the shape (2), we
need to show two things: (a) Σ∞ is the unique and strong solu-
tion of the Kalman filter’s Riccati equation, and (b) we obtain
exponential convergence of Σ𝑧 towards Σ∞.

Our first main result then reads as

Theorem 1 (Exponential convergence of Kalman filter):
Suppose that the attacker has access to all model parameters
of the plant and the controller. Suppose further, that 𝐷𝑐 has
full row rank that 𝑅 = 𝐷𝑐Σ𝑣𝐷⊤

𝑐  is invertible, (𝐴, 𝐷𝑐𝐶) is
detectable, and 𝑧[0] is uncorrelated with 𝛼[𝑘], 𝛽[𝑘].
Then, the attacker’s controller estimate converges exponen-
tially, if and only if 𝜌(𝐴𝑐 − 𝐵𝑐𝐷†

𝑐𝐶𝑐) < 1 and (𝐴, Σ1/2
𝑤 )

does not have unreachable modes on the unit circle.

Note, that the attacker has access to control inputs {𝑢[𝑖]}𝑘
𝑖=0

to estimate the controller states at time step 𝑥𝑐[𝑘 + 1].

IV. Strategy #2: Unknown Input Observer
The control inputs to the plant over a range of 𝐿 + 1 time

steps, denoted as [𝑘 : 𝑘 + 𝐿], can be written as
𝑢[𝑘 : 𝑘 + 𝐿] = 𝒪𝐿𝑥𝑐[𝑘] + ℐ𝐿𝑦[𝑘 : 𝑘 + 𝐿], (3)

with the observability matrix 𝒪𝐿 and the invertibility matrix
ℐ𝐿. These matrices are computed recursively as

𝒪𝐿 = (
𝐶𝑐

𝒪𝐿−1𝐴𝑐
), ℐ𝐿 = (

𝐷𝑐
𝒪𝐿−1𝐵𝑐

0
ℐ𝐿−1

),

with 𝒪0 = 𝐶𝑐, and ℐ0 = 𝐷𝑐. The matrices are computed to-
gether with the system inherent delay 𝐿. An observer for the
controller states that operates independently of plant measure-
ments reads as

𝑥𝑐[𝑘 + 1] = 𝐸𝑥𝑐[𝑘] + 𝐹𝑢[𝑘 : 𝑘 + 𝐿]. (4)
To motivate the design of 𝐸 and 𝐹 , we investigate the estima-
tion error 𝑒𝑐[𝑘] = 𝑥𝑐[𝑘] − 𝑥𝑐[𝑘], using (3) and (4):

𝑒𝑐[𝑘 + 1] = 𝐸𝑒𝑐[𝑘] + (𝐸 − 𝐴𝑐 + 𝐹𝒪𝐿)𝑥𝑐[𝑘]
+ 𝐹ℐ𝐿𝑦[𝑘 : 𝑘 + 𝐿] − 𝐵𝑐𝑦[𝑘].

(5)

For the error to converge to zero, matrix 𝐸 needs to be stable
and 𝐹  needs to fulfill both of the conditions

𝐹ℐ𝐿 = [𝐵𝑐 0 … 0]  and 𝐸 = 𝐴𝑐 − 𝐹𝒪𝐿. (6)
The first part in (6) ensures the independence of the error
from the unknown plant measurements, while the second part
ensures independence from the controller states. Theorem 3.2
in [4] shows that an UIO exists if and only if the controller is
strongly detectable, i.e., it holds that

rank
⎣
⎢⎡

𝐴𝑐 − 𝑧𝐼
𝐶𝑐

𝐵𝑐

𝐷𝑐⎦
⎥⎤ = 𝑛𝑐 + 𝑛𝑦, ∀𝑧 ∈ ℂ, |𝑧| ≥ 1. (7)

This condition coincides with all invariant zeros of the con-
troller having a magnitude of less than one.

Theorem 2 (Exponential convergence of UIO):
Suppose that the attacker has access to the model parameters
of only the plant.
Then, the attacker’s controller state estimate converges expo-
nentially fast, if and only if it is minimum-phase (7).

Here, the attacker has access to control inputs {𝑢[𝑖]}𝑘+𝐿
𝑖=0  to

estimate the controller states at time step 𝑥𝑐[𝑘 + 1].

V. Summary
The Kalman filter requires information on the plant, con-

troller, and noise statistics, while the UIO only requires infor-
mation on the controller. Additionally, the Kalman filter re-
quires the closed-loop system to be stable. In contrast, the UIO
estimates the controller’s states directly and is therefore inde-
pendent of the closed-loop dynamics.

The Kalman filter is designed to compute a one-step ahead
estimate, based on the current control input. If 𝐷𝑐 = 0, the
noisy measurement signal 𝑦[𝑘] does not instantaneously act on
the control input 𝑢[𝑘], which is what the Kalman filter bases
its prediction on. Only after a delay of one time step 𝐿min = 1
does the noise act on the controller states and, therefore, on the
control input 𝑢[𝑘]. Thus, the Kalman filter fails to predict the
controller states perfectly if the noise does not directly act on
the control inputs. Requiring 𝐷𝑐 to be of full row rank for the
Kalman filter to converge implies that 𝑛𝑦 ≥ 𝑛𝑢. This condition
is not restrictive since a subset of control inputs can be picked
if violated. Contrarily, the UIO needs to have at least as many
measured outputs as unknown inputs 𝑛𝑢 ≥ 𝑛𝑦.

In [3], it is shown that an attacker using a Kalman filter and
plant measurements 𝑦[𝑘], require the controller to not have
unstable poles. In contrast, we find that if an attacker accesses
the control inputs 𝑢[𝑘], Kalman filter and UIO require stable
controller zeros.

More specifically, regarding the Kalman filter, we obtain
from Theorem 1 that the instantaneous right-inverse exists
and is stable. For the UIO, Theorem 2 is more general and
requires all invariant zeros to be stable. This implies, that the
𝐿-delay left-inverse of the controller exists and only has sta-
ble poles.

References

[1] E. Breukelman and H. Sandberg, “Unknown Input Observers Breaking
Confidentiality of Controller States,” in 2024 IEEE 63rd Conference on
Decision and Control (CDC), Milan, Italy: IEEE, Dec. 2024, pp. 2373–
2378. doi: 10.1109/CDC56724.2024.10886707.

[2] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack models
and scenarios for networked control systems,” in Proceedings of the 1st
international conference on High Confidence Networked Systems, Beijing
China: ACM, Apr. 2012, pp. 55–64. doi: 10.1145/2185505.2185515.

[3] D. Umsonst and H. Sandberg, “On the confidentiality of controller states
under sensor attacks,” Automatica, vol. 123, p. 109329–109330, 2021, doi:
https://doi.org/10.1016/j.automatica.2020.109329.

[4] S. Sundaram, “Fault-Tolerant and Secure Control Systems,” Lecture Notes,
Department of Electrical and Computer Engineering, University of Wa-
terloo.

https://doi.org/10.1109/CDC56724.2024.10886707
https://doi.org/10.1145/2185505.2185515
https://doi.org/https://doi.org/10.1016/j.automatica.2020.109329

	Motivation
	Problem formulation
	Strategy #1: Kalman Filter
	Strategy #2: Unknown Input Observer
	Summary
	References

