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I. INTRODUCTION

Robust control methods depend critically on the structured singular value µ, a measure of how large uncertainties can
become before destabilizing a feedback system. Although µ is highly valuable, its exact computation is known to be NP-
hard, motivating methods to estimate lower and upper bounds. Traditional approaches, such as MATLAB’s Robust Control
Toolbox, rely heavily on precise system models. Unfortunately, accurate modeling is often difficult or impractical, motivating
purely data-driven alternatives. This work presents a novel purely data-driven algorithm for estimating lower bounds of the
structured singular value directly from experimental data. Our method extends classical model-based power iteration methods
by Doyle [1], enabling robustness analysis without explicit model identification. More details appear in [2].

II. PROBLEM SETUP

Consider a linear time-invariant square multivariable discrete-time dynamical system defined by its transfer function G(z).
It is composed of a “nominal” stable and strictly proper model G0(z) and a stable block ∆(z) denoting a multiplicative
uncertainty. Then,

Y (z) = [I +G0(z)∆(z)]−1G0(z)︸ ︷︷ ︸
=:G(z)

U(z).

Suppose that ∆ is known to be of the form diag(δ1Ir1 , . . . , δsIrs ,∆1, . . . ,∆f ), where δ1, . . . , δs ∈ C and ∆1, . . . ,∆f
are stable dynamical systems of sizes m1 × m1, . . . , mf × mf , respectively. s represents the number of repeated scalar
blocks and f the number of full blocks. Then, the structured singular value of G0 is defined as

µ∆(G0) :=
1

min

{
∥∆∥∞ :

∆ ∈ ∆,

det
[
I+G0(z)∆(z)

]
= 0

for some z ∈ T

} .

Unfortunately, computing µ∆(G0) is hard, hence one typically needs to rely on lower and upper bounds for it [1]. An
appealing approach that exists in the literature [3], [4] is to compute a lower bound on µ∆(G0) based on the power iterations
method [5] and a model for G0. Inspired by that method, in this paper we propose instead a fully data-driven approach to
compute a lower bound on µ∆(G0) that does not require knowledge of G0.

III. PRELIMINARIES

Let

∆ := {diag(δ1Ir1 , . . . , δsIrs ,∆1, . . . ,∆f ) : δ1, . . . , δs ∈ C, ∆1 ∈ Cm1×m1 , . . . ,∆f ∈ Cmf×mf },
B∆ := {∆ ∈ ∆: σ̄(∆) ≤ 1},

where r1, . . . , rs,m1, . . . ,mf are fixed positive integers such that r1 + · · · + rs +m1 + · · · +mf = n. Based on these
sets, one can define the structured singular value at a specific frequency ω ∈ [−π, π) (at which we define M = G0(e

iω)):
Definition 1 (Structured singular value): For M ∈ Cn×n, let

µ′
∆(M) :=

1

min {σ̄(∆) : ∆ ∈ ∆, det(I +M∆) = 0} .

The following theorem establishes bounds on µ′
∆(M).

Theorem 1: For all M ∈ Cn×n, we have that

max
Q∈Q

ρ(QM) = max
∆∈B∆

ρ(∆M) = µ′
∆(M) ≤ inf

D∈D
σ̄(DMD−1).

Motivated by Theorem 1, our goal is to derive a method for finding a local maximum of the function ∆ 7→ ρ(∆M) over
all ∆ ∈ B∆.

IV. PROPOSED APPROACH

We propose a novel data-driven approach to compute a lower bound on µ∆ by adapting the power method given in [3].
Since we need to obtain a µ∆ for each frequency, we carry out many of the operations in the frequency domain while the
simulations of the plant are in time domain.

The pseudo-code for the data-driven estimation of Structured Singular Values is shown in Algorithm 1. The algorithm
terminates when µ̄ ≈ µ̃, and their values remain unchanged across iterations for each frequency m. Finally, µ∆(G0) is
obtained by selecting the maximum µ across all frequencies.
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Algorithm 1 Data-Driven Estimation of Structured Singular Value

Require: Initial vectors B[0, :], W [0, :], Frequencies m = 1, . . . , N
1: for l = 0, 1, . . . until convergence do
2: Direct excitation:
3: b[l, t]← ifft(B[l,m])

4: Excite G0 with b[l, t]; measure p[l, t]

5: P [l,m]← fft(p[l, t])
6: µ̃[l + 1,m]← ∥P [l,m]∥ for each frequency m

7: Update A[l + 1,m],Z[l + 1,m] for each frequency m

8: Transpose-plant excitation:
9: z[l + 1, t]← ifft(Z[l + 1,m])

10: Set r[l + 1, t] = 0

11: for α, β = 1, . . . , n do
12: Excite G0 with eαeTβz[l + 1, :]; measure g[l + 1, :]

13: r[l + 1, :]← r[l + 1, :] + eαeTβ g[l + 1, :]

14: end for
15: R[l + 1,m]← fft(r[l + 1, t])

16: µ̄[l + 1,m]← ∥R[l + 1,m]∥ for each frequency m

17: Update W [l + 1,m],B[l + 1,m] for each frequency m

18: end for
19: return µ∆ = maxm µ̃[m]

Direct excitation: The computation of P can be carried out as
follows:

b[l, t]←
1

N

N−1∑
m=0

B[l,m]ei2πmt/N , t = 1, . . . , N

P [l,m]←
N∑
t=1

G0(q)b[l, t]e
−i2πmt/N , m = 1, . . . , N.

Transpose-plant excitation: To account for the transpose of G0,
we use the identity from [6, Eq. (21)]:

GT
0 (q) =

n∑
α=1

n∑
β=1

eαe
T
βG0(q)eαe

T
β .

Thus, we obtain the pseudo-code for computing R:
for α, β = 1, . . . , n :

r[l + 1, :]← r[l + 1, :] + eαe
T
βG0(q)eαe

T
β z[l + 1, :]

R[l + 1,m]←
N∑
t=1

r[l + 1, t]ei2πm(t−1)/N , m = 1, . . . , N.
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Fig. 1. Comparison between µ∆(G0) and N .
Solid line: µ̃, dashed line: µ̄, dotted line: mussv.
From top to bottom, systems with 1 block, 2
blocks, and 3 blocks, respectively.
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Fig. 2. Structured singular value for different
frequencies.
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Fig. 3. Accuracy improvement with frequency
samples.

V. EXPERIMENTS AND CONCLUSION

Figure 1 displays the results of a heuristic example with ∆ ⊂ C3×3, where eight different block structures are analyzed
in terms of convergence to the lower bound µM , provided by the mussv command in MATLAB, and its dependence on the
number of frequency samples N . Extensive simulations show that the algorithm generally exhibits good convergence when
f > s, mk > rj (for all j, k), and s = 0 with f ≥ 1. Note that, as N increases, the performance of Algorithm 1 improves.
Figure 2 illustrates the structured singular value for a single repeated scalar block of dimension r1 = 1 and a single full
block with m1 = 2 (Case 4 in Figure 1), where µ̃ and µ̄ align well with µM at the dominant frequency but deviate at others,
which is expected based on the properties of the power method [7].

Algorithm 1 has also been tested on a large set of randomly generated matrices. A total of 2100 experiments have been
conducted for three block structure configurations (s = 0, f = 0 and a mixed case) on n × n complex matrices, with
n = 2, 3, . . . , 8. Figure 3 illustrates the percentage of simulations where the average of µ̃ and µ̄ converge to µM , which
demonstrates better performance for s = 0 and, across all three cases, a deterioration of the algorithm when n > 5.

Numerical examples show our method closely matches mussv lower bounds. Future studies could extend evaluation to
real-world systems to further assess robustness.
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