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Abstract: The Linear Quadratic Regulator is central in control theory, however, a weakness
is that the input-output mat of the optimal controller almost always is dense, even when the
problem data is sparse. In this work we reformulate LQR problem as a least squares problem.
We demonstrate by example that while the input-output map is dense, the same control law
can be computed using sparsity exploiting tools from linear algebra.

1. INTRODUCTION

The state-feedback solution to the Linear Quadratic Reg-
ulator (LQR) problem is a cornerstone of modern control
theory (Kalman (1960)). In the discrete-time case it shows
that under mild assumptions on the matrices A,B and Π,
the solution to the optimal control problem

min
u[0],u[1],u[2],...

∞∑
k=0

[
x [k]
u [k]

]T
Π

[
x [k]
u [k]

]
s.t. x [k + 1] = Ax [k] +Bu [k] , x [0] ∈ Rn

(1)

is given by the static control law

u [k] = Kx [k] . (2)

A difficulty in applying LQR in large-scale applications is
that the optimal control law is almost always dense, even
when the problem data (the matrices A,B and Π) is not.
This means that computing the j -th element of the control
signal u [k] ∈ Rm requires the entire state measurement
x [k] ∈ Rn, which becomes infeasible if its dimension is too
large. There has been significant developments in the area
of exploiting sparsity in the problem data, for example
through the concept of Quadratic Invariance Rotkowitz
and Lall (2006); Lessard and Lall (2016), or more recently
System Level Synthesis Wang et al. (2018) have been
made.

In this paper, we take a slightly different perspective.
Rather than trying to solve (1) under sparsity constraints
on the control law, we instead look for sparse imple-
mentations of the standard LQR control law. This not
only sidesteps all the theoretical issues and performance
losses incurred by imposing sparsity constraints, but also
preserves all the desirable robustness properties of the
standard LQR solution.

The basic idea behind our approach is to rewrite (1) as a
least squares problem of the form

min
v[0],v[1],...

∞∑
k=0

∥q∗Mv [k] + yinit [k] ∥2.

In the above the sequence y and the operator M depend
only on the problem data. Therefore we can obtain the
optimal input from the closed form solution to the least
squares problem. The hope is that the sparsity structure
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in the problem data is inherited by the operator M. It is
the objective of this note to present a simple example that
shows that this approach is possible.

2. RESULTS

2.1 The Example

The rest of this note is focused on the following special
instance of (1), in which x ∈ R7 and u ∈ R3.

min
u[0],u[1],...

∞∑
k=0

r2k
(
x1 [k]

2
+ x3 [k]

2
+ x5 [k]

2
+ x7 [k]

2
)

s.t. x2i [k + 1] = ui [k] ,

x2i+1 [k + 1] = x2i+1 [k] + x2i+2 [k]− ui [k] .
(3)

In the above the 0 < r < 1 is a discount factor, and the
index i runs from 0 to 3 (where in a slight abuse, if the
index is out of bounds, the term is ignored).

The underlying dynamics are sketched in Figure 1. The
idea is that we have an underlying flow of a particu-
lar quantity (water, heat, ...) that we wish to regulate
throughout a network by adjusting the amount of the
quantity that is transported between neighbouring loca-
tions. This transportation is subject to delay.

2.2 A Controller Implementation using Back-Substitution

In this section we will demonstrate that the optimal
control law for (2) can be written as

K1u [0] = K2x [0] ,

where K1 and K2 are matrices that are banded in such
a way that in order to compute the i -th input, only the
state-variables in the neighbouring nodes and knowledge
of the control input immediately upstream are required. It
should be noted that K−1

1 K2 = K.

In the rest of this section we will discover the reason for
this structure in this control law. In particular we will
see that the dynamic constraint can be given a sparse
operator description. By extending some basic tools from
numerical linear algebra to this setting, this allows the
optimal control law to efficiently described and computed
using back substitution.

Least squares Problem Formulation: The first step
in deriving this control law is to reformulate (3) as a least
squares problem. To do this we do a variable transform in
the dynamics in (3), including the discount factor in the
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Fig. 1. Illustration of the system dynamics.

states. After that we reformulate the dynamics in terms
of the backward shift operator q∗ so that the dynamics
become

(1− rq∗)

x1 [k]
x3 [k]
x5 [k]
x7 [k]

 = q∗

rq
∗ 0 0

−1 rq∗ 0
0 −1 rq∗

0 0 −1


︸ ︷︷ ︸

M

[
u1 [k]
u2 [k]
u3 [k]

]
+ d [k] ,

where d [k] = [Cx [0] , CrAx [0] , 0, 0, . . .] captures the
initial condition of the states. The operator matrix M
captures the sparsity of the transportation network. The
remaining dynamics are not important for what follows
and is therefore hidden by the invertible variable trans-
forms {

(1− rq∗) v [k] = u [k]

(1− rq∗) yinit [k] = d [k] .

Notice that v [0] = u [0], which is the control law we are
looking for and the

yinit [k] =
[
Cx [0] , CrAx [0] , Cr2Ax [0] , Cr3Ax [0] , . . .

]
.

This means that the LQR problem in(3) can be rewritten
to the least squares problem

min
v[0],v[1],...

∞∑
k=0

∥q∗Mv [k] + yinit [k] ∥2.

The solution to this problem is

M∗Mv̂ [k] = −qM∗e [k] ,

where v̂ [k] denotes the optimal solution and M∗ denotes
the adjoint of M which you get by transposing the matrix
and replacing the backward shift operators with their
adjoint operator, the forward shift q.

Cholesky-factorisation: In the previous subsection we
saw that (3) could be formulated as a least squares problem
involving a sparse operator M. In this section we will show
how to obtain a sparse Cholesky-factorisation of M∗M
into LL∗, where L is lower triangular.

To perform an Cholesky-factorisation, we need the oper-
ations of addition, subtraction, adjoints, multiplication,
inversion and finding square roots. In general it can be
hard to find inverses and square roots of operators built
out of shift operators, but in this example it is not.

The Cholesky factorisation is given on the form

L =

[
l111 0 0
l21q l221 0
0 l32q l331

]
,

where LL∗ = M∗M and lij ∈ R.

Solving for u using Back-substitution: We can now
exploit our sparse Choelsky-factorisation to compute the

optimal control input using back-substitution. We are
specifically interested in û [0] = v̂ [0].

First we compute

w [k] = −qM∗yinit [k]

Because of the structure in yinit it can be seen that
w [k] = rkw [0]. To find the expression for w [0] we express
M∗ = (M∗)0 + (M∗)1 q. Then it can be shown that

w [0] = ((M∗)0 + (M∗)1 r)CrA︸ ︷︷ ︸
K2

x [0] .

Next we need to solve LL∗v = w. As usual, we define an
intermediate variable, and first solve Lν = w. Note that
L∗ does not conatin any forward shifts. This means that
we only need ν [0] to compute v [0].

To do this we express L = L0 + L1q and reformulate the
equation to solve into[

L0 L1 0
0 L0 L1

0 0 L0

]
︸ ︷︷ ︸

LT

[
ν [0]
ν [1]
ν [2]

]
=

[
w [0]
w [1]
w [2]

]
,

where the notation ν [k] indicates that the we do not get
the correct signal for that sample. In order to get the
entyer signal correct the matrix LT would have to be semi-
infinite, but because the matrix L0 is diagonal and L1 is
lower triangular with zeros on the diagonal the first values
can be obtained with a truncated LT .

Performing the back substitution we obtain that

v [0] =
(
L−1
0

)2 (
I − Lr + L

2
r2
)

︸ ︷︷ ︸
K−1

1

K2x [0] ,

where L = L−1
0 L1.
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