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I. INTRODUCTION

Transforming an asymmetric system into a symmetric
system makes it possible to exploit the simplifying
properties of symmetry in control problems. We define
and characterize the family of symmetrizable systems,
which can be transformed into symmetric systems by
a linear transformation of their inputs and outputs.
In the special case of complete symmetry, the set of
symmetrizable systems is convex and verifiable by a
semidefinite program. A Khatri-Rao rank needs to be
satisfied for a system to be symmetrizable. Therefore,
linear systems are generically neither symmetric nor
symmetrizable.

II. SYMMETRIC SYSTEMS

Symmetric systems, also known as reciprocal systems
in the literature, are control systems that exhibit input-
output symmetry in their transfer function matrices
G(s) ∈ Cm×m as follows

ΣeG
⊤(s) = G(s)Σe, (1)

where Σe is a constant diagonal matrix whose diagonal
elements are either 1 or −1. Relaxation systems are a
well-known subset of these systems with Σe = I .

Symmetric systems are found in diverse application
areas, such as electrical circuits, chemical reactors, me-
chanical systems, and power networks. These systems
have properties that simplify many control problems. For
example, certain H2 and H∞ optimal control problems
have well-known analytical solutions when applied to
symmetric systems, the optimal linear-quadratic regula-
tor of symmetric systems can be obtained by iterative
learning control with no bias, and estimated by a single
trajectory of the system. To be able to use these simpli-
fying properties beyond symmetric systems, we need to
extend the family of symmetric systems.

III. SYMMETRIZABLE SYSTEMS

We extend the family of symmetric systems, by intro-
ducing symmetrizable systems. These systems may not
be symmetric, but after a linear transformation of their
inputs and outputs as

H(s) = K−1G(s)K, (2)

they become symmetric, where K ∈ Rm×m is a constant
invertible matrix, called the symmetrizing gain. The
transformation (2) induces the following equivalence

relation on m × m transfer functions: G
s∼ H is true

if there is some non-singular K ∈ Rm×m such that (2)
holds. Hence, if a member of a class is symmetric, all
members of that class are symmetrizable. If no member
of a class is symmetric, then none of the members
are symmetrizable. The following theorem provides the
conditions that characterize all symmetrizable systems.

Theorem 1: A system represented by the state space

P =

[
A B
C D

]
is symmetrizable if and only if the following equations
have a non-singular solution for Q:

PQ = QP⊤, Q = Q⊤ (3)
Q12 = 0. (4)

where Q12 = [In 0]Q [0 Im]⊤ is an off-diagonal block
of Q.

Remark 1: Symmetrizable systems include symmet-
ric systems as a subset. This follows from choosing
K = I in (2).

Remark 2: When the system represented by P is
symmetrizable, one can find a symmetrizing gain K and
a symmetric realization T based on the solution Q of
the equations (3)-(4). Such matrices T and K are not
unique, with one instance being

T = F1|D1|1/2, K = F2|D2|1/2 (5)

where D1 (D2) is the diagonal matrix of eigenvalues
of Q11 (Q22) associated with an orthonormal matrix of
eigenvectors F1 (F2) sorted such that sgn(D1) = −Σi

(sgn(D2) = Σe).
Remark 3: Enforcing Q ≻ 0 in (3) makes the sym-

metrizability conditions convex. A system can be sym-
metrized into a completely symmetric system if and only
if the following semidefinite program is feasible

find Q ∈ R(n+m)×(n+m)

subject to Q ≻ 0
PQ = QP⊤

[In 0]Q [0 Im]⊤ = 0.

(6)

IV. EXAMPLES

A. A classical multi-tank system

In this example, we show how symmetrizability
extends symmetry in a physical system. Consider a



quadruple-tank process with two inputs (voltages applied
to the pumps) and two outputs (levels of the lower
tanks). This process can be described by the transfer
function

G(s) =

[
c11

1+sT1

c12
(1+sT1)(1+sT3)

c21
(1+sT2)(1+sT4)

c22
1+sT2

]
, (7)

where

c11 = γ1k1T1kc/A1,

c12 = (1− γ2)k2T1kc/A1 ̸= 0,

c21 = (1− γ1)k1T2kc/A2 ̸= 0,

c22 = γ2k2T2kc/A2. (8)

In (7)-(8), Ai is the cross-section of the ith tank, Ti is
the time constant associated with the ith tank, constants
ki > 0 and γi ∈ [0, 1] are determined by the ith pump
and valve settings and kc > 0. From definition (1), this
system is symmetric if and only if

T1 = T2, T3 = T4 or T1 = T4, T2 = T3 (9)
c12 = ± c21. (10)

However, the first condition (9) is sufficient for the
system to be symmetrizable. Hence symmetrizability im-
poses a less restrictive condition on the tank parameters
than symmetry.

B. Applications in optimal control

In this example, we show how the simplifying prop-
erties of symmetric systems carry over to symmetrizable
systems. This is realized by first transforming the asym-
metric system G(s) to a symmetric system H(s) as (2),
solving a control problem for H(s), and converting the
result back for G(s).

For example, consider the static output-feedback con-
troller us(t) = Ks ys(t) designed for the symmetric
system H(s) with input us and output ys. This control
law is equivalent to applying the following static output
feedback to G(s):

u(t) = KKsK
−1y(t), (11)

where u and y are the input and output of the asym-
metric system G(s), respectively. To demonstrate this
application, we consider the linear system described by
the minimal state-space equations

ẋ(t) = Ax(t) +Bu(t) + w(t)
y(t) = Cx(t) +Du(t)

, t ≥ 0 (12)

where x(0) = 0 and w(t) ∈ Rn is the disturbance
input. We would like to find an output-feedback linear
controller that stabilizes the system and minimizes the
performance measure

J (R,S) = sup
w∈W(S)

∫ ∞

0

y(t)⊤Ry(t)+α2u(t)⊤Ru(t)dt

where α > 0 balances the control effort versus output
regulation in the objective function and

W(S) =

{
w
∣∣∣ ∫ ∞

0

w⊤(t)Sw(t)dt ≤ 1

}
,

where R,S ≻ 0. This problem was introduced and
solved for relaxation systems in [1], for which R = I .
We extend this result to a family of symmetrizable
systems that include relaxation systems as a proper
subset and allow for R ≻ 0 as any positive definite
matrix.

Now, assume that system (12) is symmetrizable with
complete symmetry. Then the semidefinite program (6)
has a solution Q ≻ 0 which can be used find

T = Q
1/2
11 , K = Q

1/2
22 .

Choosing

R = K−2, S = T−2

and following the results of [1], shows that the per-
formance measure J (K−2, T−2) is minimized with a
static output-feedback controller with the closed-form
expression

us(t) = −α−1(K−1DK −K−1CA−1BK)ys(t).

Therefore, the optimal feedback controller from y to u
is given by

u(t) = −α−1(D − CA−1B)y(t).

V. CONCLUSION

We studied the problem of transforming a linear
system into a symmetric system using a static gain.
We have derived the conditions for this transformation
to exist and provided a method to obtain both the
symmetrizing gains and symmetric realizations with
different signatures.

Symmetrizability is a weaker condition than symme-
try. Yet, it allows one to apply the simplifying properties
of symmetry when controlling symmetrizable systems.
To demonstrate this point, we revisited an optimal
control problem and extended its analytic solution for
symmetric systems to symmetrizable systems.
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