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Abstract— Navigating a collision-free, optimal path for a
robot poses a perpetual challenge, particularly in the presence
of moving objects such as humans. In this study, we formulate
the problem of finding an optimal path as a stochastic optimal
control problem. However, obtaining a solution to this problem
is nontrivial. Therefore, we consider a simplified problem,
which is more tractable. For this simplified formulation, we
are able to solve the corresponding Bellman equation. However,
the solution obtained from the simplified problem does not
sufficiently address the original problem of interest. To address
the full problem, we propose a numerical procedure where we
solve an optimization problem at each sampling instant. The
solution to the simplified problem is integrated into the online
formulation as a final-state penalty. We illustrate the efficiency
of the proposed method using a numerical example.

I. INTRODUCTION

There are numerous applications of autonomous mobile
robots that are discussed in the literature. In general, these
applications are divided into two groups: indoor applications,
such as delivering packages, cargo, and cleaning large build-
ings [1], and outdoor field robotics application [2]. Finding
an optimal path for the robot to reach its destination is a
crucial task in these applications. Path planning is one of
the primary challenges that must be solved before mobile
robots can autonomously navigate and explore complex
environments [3]. The primary goal of path planning is to
ensure safe, efficient, and collision-free navigation in both
static and dynamic environments [4].

Summarizing, the main contributions of this paper are:
1) We formulate an optimal path planning problem as a

stochastic optimal control problem.
2) We show that the corresponding value function exhibits

symmetry, enabling its representation with a reduced
number of variables.

3) We use a numerical example to illustrate that the
proposed framework can outperform the widely used
A⋆ algorithm on the considered class of problems.

II. MATHEMATICAL MODEL

Consider the problem where there is a robot, a stochasti-
cally moving obstacle, and a static target in a 2-dimensional
space. Let rk ∈ R2 and hk ∈ R2 represent the positions of
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the robot and the moving obstacle at time k, respectively.
Moreover, assume that t ∈R2 is the target position, where R
is the set of real numbers.

The problem is to find an optimal policy that enables the
robot to reach the final state, i.e. the target, while trying to
avoid colliding with the moving obstacle. The mathematical
description of this problem is as follows:

minimize lim
N→∞

E

[
N−1

∑
k=0

f (hk,rk)

]

subject to

{
rk+1 = Fr (rk,uk)≜ rk +uk

hk+1 = Fh (hk,wk)≜ hk +wk
, k ≥ 0

uk ∈ U ,wk ∈ W k ≥ 0

(1)

where E[·] denotes mathematical expectation, and where
Fr : R2 × U → R2, Fh : R2 × W → R2. Here U ={

Ru
[
cos(α) sin(α)

]T ∈ R2 : Ru ∈ R+,α ∈ [0,2π]
}

,

and W =
{

Rw
[
cos(γ) sin(γ)

]T ∈ R2 : Rw ∈ R+,γ ∈ [0,2π]
}

.
Where R+ is the set of nonnegative real numbers. We assume
that the probability density function of w only depends
on Rw, i.e. it is constant for each value of γ . We let
e = ||r− t||2, and d = ||h−r||2. Moreover, f : R2×R2 →R+

is the so-called incremental cost. We define this function
for a given target position t as

f (h,r) =

{
0, ||r− t||2 ≤ R
λ (||r− t||2 −1)2 + 1

||h−r||2+ε
, ||r− t||2 > R

=

{
0, e ≤ R
λ (e−1)2 + 1

d+ε
, e > R

≜ f̄ (d,e)

(2)
where f̄ : R+×R+ → R+, and where λ ∈ R++ is a tuning
parameter, and ε ∈ R++ is a small number. Here, R++ is
the set of positive real numbers. We will solve the infinite
horizon optimal control problem (1) using the Bellman
equation:

V (h,r) = min
u∈U

E [ f (h,r)+V (Fh(h,w),Fr(r,u))] (3)

If we find a solution V to this equation, the optimal policy
is the minimizing argument in the right-hand side of the
equation. Thus the optimal policy is a function of (h,r). Note
that, the Bellman equation in (3) must be solved for all (h,r)
and for a given target position t. This problem leads to the
’curse of dimensionality’ due to the large state space. We
can use value iterations [5] to solve the Bellman equation
in (3):



Vk+1(h,r) = min
u∈U

E [ f (h,r)+Vk (Fh(h,w),Fr(r,u))] (4)

where V0(h,r) = 0,∀h,r ∈ R2. The limit of this sequence as
k goes to infinity satisfies the Bellman equation.

III. GEOMETRIC SYMMETRY

In this section we will show that the value function has a
symmetry, and we will use this property to reduce the domain
of the value function.

Definition 1: Consider the two pairs, (h1,r1) and (h2,r2),
in Fig. 1. If d1 = d2, e1 = e2, and θ1 =±θ2, then these pairs
are said to be symmetric around t .
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Fig. 1: Geometrical representation of position of robot, and moving
obstacle for two symmetric pairs (h1,r1), and (h2,r2)

We can show that for (4), if (h1,r1) and (h2,r2) are
symmetric, then Vk+1(h1,r1) =Vk+1(h2,r2), regardless of the
values of φ1 and φ2. We now define

Wk(d,e,θ) =Vk

(
t + e

[
1
0

]
+d

[
cos(θ)
sin(θ)

]
, t + e

[
1
0

])
(5)

where Wk :R+×R+× [0,2π]→R. Then we can equivalently
write (4) as

Wk+1(d,e,θ) = min
u∈U

E
[

f̄ (d,e)+Wk (d+,e+,θ+)
]

(6)

where d+, e+, and θ+ are functions of d, e, θ , u, and w. The
limit of this recursion will define a solution to (3). This limit
is denoted by W (d,e,θ), where W : R+×R+× [0,2π]→R.

IV. FITTED VALUE ITERATION

We propose to solve the recursion for Wk in (6) using
fitted value iteration [5]. Our goal is to approximate the
function Wk(d,e,θ), with W̃ : R+ ×R+ × [0,π]×Rp → R.
One possibility is to use a linear regression model as follows:

W̃ (d,e,θ ,ak) = aT
k ϕ(d,e,θ) (7)

We consider a piecewise constant approximation of Wk by
assuming that the i-th component of ϕ , i ∈ {1,2, · · · , p} is
defined as

ϕi(d,e,θ) =

{
1, (d,e,θ) ∈ Si

0, (d,e,θ) /∈ Si
(8)

where Si is a partition of R+×R+× [0,π].
We also restrict ourselves to the case that Ru ∈ {0, R̄u},

and Rw ∈ {0, R̄w} to have a tractable problem.

V. EFFECT OF PROBABILITY DISTRIBUTION AND
CONSTRAINTS

Now, we relax the condition regarding to probability dis-
tribution of w, and also consider constraints on the states. We
use the optimal value function V that satisfies the Bellman
equation in (3) and formulate the following problem:

u⋆k = argminuk
E [ f (hk,rk)+V (hk+1,rk+1)]

subject to

{
rk+1 = Fr (rk,uk)

hk+1 = Fh (hk,wk)
, k ≥ 0

uk ∈ U ,wk ∈ W ,xk = (rk,hk) ∈ X k ≥ 0
(9)

where X is the set of all constraints on xk. The expectation
is with respect to w, and the probability distribution of w
is arbitrary. At each time step, we solve the optimization
problem (9) in real-time to find the control signal u⋆k , and
then we apply this control signal.

VI. NUMERICAL RESULTS

We consider a numerical example to show the efficiency of
the proposed method. We let h0 =

[
2 6

]T , r0 =
[
4 12

]T ,
and t =

[
4 3

]T . We consider 10000 different realizations of
w, and we compare the results of the proposed method with
receding horizon A⋆. Table I shows the cost, percentage of
collisions, and execution time per stage for these methods,
averaged over all different realizations of w. The proposed
method has a lower cost than receding horizon A⋆. Addition-
ally, the average computation time per stage and percentage
of collisions for the proposed method are less than those for
receding horizon A⋆.

TABLE I: Comparison of proposed method with receding
horizon A⋆

Method Cost
Computation

Time Per
Stage [sec]

Percentage
of Collision

Proposed Method 3.1168 0.0107 0.01
Receding Horizon A⋆ 4.1683 0.2183 46.07
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