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Abstract— Industries often use high-fidelity simulators like
digital twins to represent physical systems, but these simu-
lators require calibrated parameters to match reality. Data-
driven estimators address this by mapping synthetic observa-
tions—generated under various parameter settings—to those
parameters using supervised learning. However, if the true
parameters lie outside the sampled range, out-of-distribution
(OOD) issues can arise. This paper introduces a fine-tuning
method for the Two-Stage estimator, a particular type of data-
driven estimator, to overcome OOD challenges and enhance its
accuracy.

I. INTRODUCTION

In this paper, we consider a data-driven approach to param-
eter estimation using digital twins (DTs), namely the two-
stage (TS) estimator. With high-fidelity simulators such as
DTs, one can generate synthetic input-output datasets paired
with parameter values that correspond to different operating
regimes of a DT. These datasets are used to train a machine
learning model to map system observations to parameter
estimates, forming a data-driven estimator. The TS estimator,
in particular, compresses observations into representative
features in its first stage and then uses these features to train
a supervised model in its second stage. This approach avoids
the complexity of explicit likelihood calculations and, as
research shows [1], [2], can outperform traditional methods
like Kalman filters, or the prediction error method. However,
its effectiveness relies on the assumption that the system
parameters lie within the range used during offline training.
If this assumption fails—leading to an out-of-distribution
(OOD) scenario—the estimates can be biased. To address
this, we propose a perturbation-based tuning method for
the TS estimator, where the second stage is a deep neu-
ral network. By comparing the compressed features from
real observations with those from DT simulations (using
the initially predicted parameters), the method constructs a
perturbation set, based on which we generate a new synthetic
dataset. This synthetic dataset is then used to recalibrate the
neural network in the TS estimator, fine-tuning its weights
and reducing the bias of the parameter estimates without
prior knowledge of the true parameters.

II. PROBLEM STATEMENT

Consider a controlled system represented by a data gen-
erating mechanism M(θ) with parameters θ ∈ Θ ⊆
Rd. For example, a digital twin (DT) of a single-input-
single-output (SISO) system produces a time series z =
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(u1, y1, u2, y2, . . . , uN , yN ), where ui and yi denote the
inputs and outputs at time i. The true system is represented
by M(θ0) for some unknown θ0 ∈ Θ. In the simulation-
driven estimation approach, synthetic observations are gen-
erated from M(θ) at parameter values θ̃i sampled from
a subset Θp ⊆ Θ. This subset, based on the user’s
prior beliefs about operating scenarios, forms the training
set Dtr = {(zi, θ̃i)}mi=1. A supervised learning model is
then trained to map observations to parameters by solving
θ̂pre(·) = argminF∈F

1
m

∑m
i=1 L

(
F (zi), θ̃i

)
, where L is a

loss function and F is a class of function approximators
(e.g., deep neural networks). The pretrained estimator θ̂pre(·)
is then used to obtain an estimate from new observations z0
via θ̂0 = θ̂pre(z0). If θ0 ∈ Θp, the estimator is approximately
unbiased. However, if θ0 /∈ Θp, an out-of-distribution (OOD)
issue may arise, leading to bias. To address this, we propose
fine-tuning the pretrained estimator—specifically, the Two-
Stage (TS) estimator—to enhance its accuracy when θ0 /∈
Θp. The TS (Two-Stage) estimator is a data-driven method
that leverages digital twins through offline pretraining on a
synthetic dataset Dtr. Its structure is as follows: (i) Stage 1
(Data Compression): High-dimensional inputs {zi}mi=1 are
compressed to low-dimensional features using a function
h : RN → Rn (n ≪ N). For i.i.d. observations, h might
compute quantiles; for time-series data, it could correspond
to the coefficients of an estimated ARX/ARMAX model.
This yields the compressed set Dcomp

tr = {(h(zi), θ̃i)}mi=1.,
(ii) Stage 2 (Function Approximation): A supervised learn-
ing model g ∈ G is then trained on Dcomp

tr by minimizing the
empirical risk

gpre(·) = argmin
g∈G

1

m

m∑
i=1

L
(
g(h(zi)), θ̃i

)
, (1)

where G is a class of functions g : Rn → Rd. The pretrained
TS estimator is then given by θ̂pre(·) = gpre ◦ h(·). If
observations z0 from a true system with θ0 /∈ Θp are
received, θ̂pre(z0) may yield poor estimates, highlighting the
need for fine-tuning.

III. PERTURBATION APPROACH TO FINE-TUNE TS

We now describe a perturbation approach [3] to fine-
tune the pretrained TS estimator. Recall that the estimator is
originally trained on a synthetic dataset {(zi, θ̃i)}mi=1, with
each θ̃i ∈ Θp ⊆ Rd, and is given by θ̂pre(·) = gpre ◦ h(·),
where

gpre(·) = argmin
g∈G

1

m

m∑
i=1

L
(
g(h(zi)), θ̃i

)
. (2)
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Fig. 1: Box plot of estimates of a ∈
Θp. The red dashed line: true value
of a = 0.25; thick blue line: mean of
the pretrained TS estimates.
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Fig. 2: Box plot of estimates of a ̸∈
Θp. The red dashed line: true value
of a = 0.5; thick blue line: mean of
the pretrained TS estimates.
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Fig. 3: Pretrained and fine-tuned TS
estimates of a /∈ Θp. Red dashed
line: true value of a; thick blue lines:
respective mean estimates.

When G is a class of neural networks parameter-
ized by weights w ∈ Rnw , the optimal weights
wpre can be computed via stochastic gradient descent:
wt+1 ← wt − β∇wf(w)

∣∣
w=wt

, where f(w) :=
1
m

∑m
i=1 L

(
gw(h(zi)), θ̃i

)
. After training, if new observa-

tions z0 are obtained from a system with θ0 /∈ Θp, the
TS estimator can lead to poor estimates. Because the com-
pression function h is fixed, only the second stage gpre(·)
is fine-tuned. Specifically, we 1) compute an initial estimate
θ̂init = θ̂pre(z0) and generate synthetic observations z̃0 =

M(θ̂init); 2) compress both z0 and z̃0 with h and compute
the discrepancy δ = η ∥h(z0) − h(z̃0)∥2, where η > 0
is a hyperparameter; 3) construct a perturbation set Θδ =
B(θ̂init, δ) and sample m′ parameter values {θ̄i}m

′

i=1 from it.
For each θ̄i, generate z̄i =M(θ̄i) to form the dataset Dfine =
{(z̄i, θ̄i)}m

′

i=1; 4) retrain the network on Dfine (starting from
wpre) using wfine = argminw

1
m′

∑m′

i=1 L
(
gw(h(z̄i)), θ̄i

)
,

yielding the fine-tuned network gfine(·) = gwfine(·). The final
fine-tuned TS estimator is θ̂fine(·) = gfine ◦ h(·), and the
refined estimate is given by θ̂0 = θ̂fine(z0).

IV. SIMULATION STUDY

In this section, we validate the effectiveness of our
perturbation-based fine-tuning approach for a pretrained
TS estimator. We consider a simple numerical example
to demonstrate that the fine-tuned TS estimator, θ̂fine(·),
achieves improved performance. Consider an autonomous
system described by the state-space model [1]: x

(1)
k+1 =

ax
(1)
k + v

(11)
k , x

(2)
k+1 = x

(1)
k + a2x

(2)
k + v

(12)
k , yk = ax

(1)
k +

x
(2)
k + v

(2)
k , where x

(1)
k and x

(2)
k are hidden states, and yk

is the output at time k. Also, v(11)k ∼ N (0, 1) and v
(12)
k ∼

N (0, 1) are additive process noises, and v
(2)
k ∼ N (0, 0.01)

is the observation noise at time k, assumed to be mutually
uncorrelated white noises. Here, a is the unknown parameter
to be estimated and, for stability reasons, a is restricted to the
interval (−1, 1). To build the synthetic dataset, we first draw
m = 5000 samples {ãi}mi=1 uniformly from (−0.3, 0.3). For
each ãi, observations of length N = 1000 are generated.
In Stage 1, the TS estimator computes AR(5) coefficients
αi ∈ R5 and in Stage 2, a deep neural network (with
linear layers and ReLU(x) = max(x, 0)) is pretrained on the
dataset {(αi, ãi)}mi=1. Evaluating the pretrained TS estimator

at a = 0.25 yields unbiased estimates with a mean squared
error (MSE) of 0.0004 (see Figure 1). Now, consider the
case where the true parameter is a = 0.5 (an OOD scenario,
since the training samples lie in (−0.3, 0.3)). Figure 2 shows
that the estimator becomes biased, and the MSE increases
to 0.004 (about 10 times larger than when a = 0.25). To
address this, we apply the perturbation method using the
initial predictions from the pretrained TS estimator. In our
experiment, we set η = 0.7 and m′ = 2000. Figure 3
displays box plots of the parameter estimates for both the
pretrained and fine-tuned TS estimators. The results clearly
show that the fine-tuned TS estimator provides significantly
improved estimates for a = 0.5, a value that lies outside the
training range Θp = (−0.3, 0.3). Specifically, the pretrained
TS estimator θ̂pre(·) achieves an MSE of 0.0036, whereas the
fine-tuned TS estimator θ̂fine(·) obtains an MSE of 0.0003,
which is ten times lower. This outcome validates that our
perturbation approach effectively fine-tunes the TS estimator
and enhances its performance in OOD scenario.

V. CONCLUSION

In this paper, we proposed a perturbation-based fine-tuning
approach for the TS estimator to adapt to OOD observations
from systems outside the original model set. By leverag-
ing the variability in compressed features, we construct a
perturbation set to generate a new dataset for retraining the
estimator’s second stage. Numerical example shows that the
fine-tuned TS estimator yields improved parameter estimates.
In future work, we shall provide theoretical justification for
this approach.
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