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I. INTRODUCTION

A. Background

Inference and estimation are fundamental aspects of statis-
tics, system identification, and machine learning. For most
inference problems, prior knowledge is available on the
system to be modeled, and Bayesian analysis is a natural
framework to impose such prior information in the form of
a prior distribution. However, in many situations, coming out
with a fully specified prior distribution is not easy, as prior
knowledge might be too vague, so practitioners prefer to use
a prior distribution that is as “ignorant” or “uninformative”
as possible, in the sense of not imposing subjective beliefs,
while still supporting reliable statistical analysis.

Jeffreys prior [1] is an appealing uninformative prior be-
cause it offers two important benefits: (i) it is invariant under
any re-parameterization of the model, (ii) it encodes the
intrinsic geometric structure of the parameter space through
the Fisher information matrix (FIM), which enhances the di-
versity of parameter samples. Despite these benefits, drawing
samples from Jeffreys prior is challenging. In this paper, we
propose a sampling scheme using the Metropolis-Adjusted
Langevin Algorithm (MALA) [2] that enables sampling from
Jeffreys prior, and provide numerical illustrations of our
approach through an example.

B. Problem Statement

Consider a family of probability distributions
{p(·;θ) : θ ∈ Θ} defined on a sample space Y , where
Θ ⊆ Rd is the parameter space.1 The constrained parameter
space for sampling is defined as Θc ⊆ Θ. The FIM at a
given parameter value θ, denoted by Jθ, is defined as

Jθ = Ey∼p(·;θ)

[
∇θ ln p(y;θ)∇θ⊤ ln p(y;θ)

]
, (1)

where y ∈ Y denotes the observations, ∇θ denotes the
gradient with respect to θ, and Ey∼p(·; θ) the expectation
operator w.r.t y. Jeffreys prior, denoted π(θ), is then given
(up to a constant factor) by

π(θ) ∝
√

det
(
Jθ

)
. (2)

The difficulty of sampling from Jeffreys prior includes: (i)
the cost of computing or approximating Jθ, and that (ii)
det

(
Jθ

)
may not integrate to a known normalizing constant.
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1Throughout this paper, we use boldface fonts (e.g., θ) to refer to vector
or matrix variables and normal fonts (e.g., θ) for scalar variables.

II. METHODOLOGY

The MALA is an advanced Langevin-based Monte Carlo
(LMC) variant. In this paper, we generate samples distributed
according to

θ ∼ π(θ) ∝ exp(−V (θ)) (3)

by simulating the following Langevin stochastic differential
equation (SDE):

dθt = −∇θV (θt)dt+
√
2dwt, (4)

where wt denotes standard Brownian motion in Rd, and
V : Rd → R is a differentiable potential function. A standard
numerical method to simulate (4) is the Euler–Maruyama
method. Discretizing time in steps of size τ , we obtain

θi+1 = θi − τ∇θV (θi) +
√
2τξi, (5)

where ξi ∼ N (0d, Id). The proposed variable θi+1 in
(5) follows Gaussian distribution. Therefore, the proposal
density can be explicitly written as

q
(
θi+1 | θi

)
∝ exp

(
−∥θi+1 − θi + τ∇θV (θi)∥22

4 τ

)
. (6)

Given a sample θ′, MALA accepts it with probability

ρMALA(θ′,θi) = min
{
1,

exp(−V (θ′)) q
(
θi | θ′)

exp(−V (θi)) q
(
θ′ | θi

)}. (7)

If the proposal is accepted, the chain advances as θi+1 = θ′;
otherwise, it remains at the current position, θi+1 = θt.
Furthermore, MALA inherently accommodates constrained
parameter spaces θ ∈ Θc by modifying the acceptance
probability as follows:

ρMALA
c

(
θ′,θi

)
=

{
ρMALA

(
θ′,θi

)
, if θ′ ∈ Θc,

0, otherwise .
(8)

For certain systems with an analytical form of the FIM,
we can directly define our potential function as

V (θ) = −1

2
ln det(Jθ), (9)

with its gradient as

∇θV (θ) = −1

2
tr
[
J−1

θ

∂Jθ

∂θ

]
, (10)

to sample from Jeffreys prior via MALA.
For nonlinear state-space (NLSS) models, closed-form ex-

pressions for FIMs are not available. In this paper, we adopt a
particle-filter–based approach to estimate the FIM, following
[3], whereby Forward Filtering–Backward Smoothing (FF-
BSm) provides an unbiased Monte Carlo approximation of
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Fig. 1. (a) Heatmap of 1000 samples from Jeffreys prior of (η) and (γ) parameters from the Weibull distribution; (b) Scatter plot of the estimation η̂
based on the uniform prior and Jeffreys prior vs. its true value; (c) Scatter plot of the estimation γ̂ based on the uniform prior and Jeffreys prior vs. its
true value. The red dashed line corresponds to an oracle estimate, which knows the true value of the parameter.

the score function, and consequently, the FIM. Given the es-
timated FIM Ĵθ, the gradient ∂Jθ/∂θ can be approximated
by one-point unbiased estimate. Specifically, we introduce
a random perturbation µ ∼ N (0d, Id) and approximate the
derivative as

∂Jθ

∂θj
≈ µj

δ

(
Ĵθ+δµ − Ĵθ

)
, j = 1, . . . , d, (11)

where δ > 0 is a small step size, and Ĵθ+δµ is computed
using the same estimation procedure as for Ĵθ. Algorithm 1
integrates the FIM estimation with the gradient approxima-
tion within MALA. More details can be found in [4].

Algorithm 1 Sample from Jeffreys Prior Distribution
Require: Initial guess θ0, parameter space Θc, step size τ ,

iteration number N , finite-difference parameter δ > 0
1: for n = 0, 1, . . . , N − 1 do
2: Compute or estimate Jθn

3: Compute ∇θV (θn) using (10) or run
4: Draw a random direction µ ∼ N (0d, Id)
5: Estimate ∇θV (θ) using (11)
6: Estimate Jθ+δµ

7: Compute ∇θV (θn) using (10)
8: Sample ξn ∼ N (0d, Id) and U ∼ U(0, 1)
9: θ′ ← θn − τ∇θV (θn) +

√
2τξn,

10: ρn ← ρMALA(θ′,θn) from (8)

11: θn+1 ←

{
θ′, If U < ρn,

θn, Otherwise.
12: end for
13: return {θn}Nn=1

III. NUMERICAL ILLUSTRATION AND CONCLUSIONS

We sample Jeffreys prior using Algorithm 1 and then
illustrate its advantages within the Two-Stage (TS) estima-
tion framework2, using parameter estimation for a Weibull
distribution as a test case, whose probability density function

2For additional details on the implementation setup of TS, we refer the
reader to [5].

is given by

f(A; η, γ) =
γ

η

(
A

η

)γ−1

exp

[
−
(
A

η

)γ]
, A ≥ 0,

where η > 0 is the scale parameter and γ > 0 is the shape
parameter. Thus, the parameter vector is θ = [η, γ]T .

We validate the TS estimators trained under uniform and
Jeffreys priors using a validation set consisting of 1000
parameter points θℓ = [ηℓ, γℓ]

T uniformly sampled from
[1, 20]× [1, 20]. For each θℓ synthetic data {yiℓ}Mi=1 from the
Weibull model. We evaluate two classes of TS estimators
based on the samples from the uniform and Jeffreys priors,
respectively.

Fig. 1(a) shows the sampled Jeffreys prior distribution in
the (γ, η) parameter space. Estimation performances for η
and γ are compared in Figs. 1(b) and 1(c), respectively.
In Fig. 1(b), both uniform and Jeffreys-based estimators
produce accurate and similar results of the scale parameter
across its entire range. However, notable differences arise for
the shape parameter γ, as seen in Fig. 1(c). Near low values
of γ < 5, the uniform-based estimator exhibits significant
variance and bias. In contrast, the Jeffreys-based estimator
demonstrates considerably improved accuracy in this region.

Overall, these results demonstrate the validity of our sam-
pling framework and highlight the advantage of leveraging
the geometry encoded by the Jeffreys prior for parameter
inference and experimental design.
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