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Abstract—In this paper offloading an advanced motion plan-
ning pipeline consisting of a path planner and a trajectory
planner is investigated. The path planner generates an obstacle-
free geometric path, while the trajectory planner computes time-
optimal trajectories which respect velocity, acceleration, and jerk
constraints for path tracking. The complete motion planner is
integrated into an offloading framework, deployed on an edge
cluster, and communicates with a robot via 5G to evaluate its
performance on a physical system.

I. INTRODUCTION

Robots are becoming more popular in today’s society in-
cluding anything from robotic vacuum cleaners to welding
robots on manufacturing floors. The robots usually execute
algorithms deployed on an industrial PC (IPC) which they are
connected to. These IPCs often have limited computational
power, restricting the complexity of algorithms they can run
onboard [1]. One solution for enabling the robot to utilize
complex algorithms is to offload the computationally demand-
ing algorithms to the cloud or nearby edge devices. This
enables the robot to perform tasks beyond its local processing
capabilities by leveraging compute somewhere else on the
network. The meaning of edge used here is a server or cluster
of servers located in close vicinity to a base station [2], [3].
This is sometimes referred to as a cloudlet.

Motion planning could be used to demonstrate how lever-
aging more computational power can results in a performance
improvement. A motion planner could either be made very
simplistic and require little computational power to run at the
cost of performance and/or robustness. Alternatively, it could
be made more advanced allowing it to handle more constraints
and/or to be more robust in a more dynamic workspace.

Collision free, time-optimal motion planning with jerk con-
straints is an example of a planner that requires computational
power to run but in turn improves the robot’s speed, dura-
bility and work range. In this paper, we have implemented
an advanced motion planner capable of computing collision
free, time-optimal, jerk-constrained trajectories to transport an
object between two points as fast as possible. This algorithm
was then used as an offloaded motion planning algorithm for
the robot to use without straining its industrial PC (IPC).

Offloading motion-planning algorithms introduces two key
challenges: the delay in executing control tasks and the risk
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of not receiving a response in time. Several factors contribute
to this risk. Optimization-based algorithms may fail to find
a solution, communication links can drop packets, or the of-
floading target may reject requests due to overload. Deploying
the algorithm closer to the robot at an edge server mitigates
some of these challenges. The transmission time gets reduced
and packet delivery success increases since the number of hops
between the robot and the edge are fewer compared to cloud-
based offloading, [3]. However, the risk of missing responses
remains, necessitating a fallback algorithm on the robot to
maintain workflow or to function as an emergency fallback to
gracefully move the robot to a safe location until the advanced
motion planner is operational again.

For mobile robots offloading, wireless communication be-
tween the robot and the cloud/edge is crucial. Making cellular
5G a promising enabler thanks to its high data rates, low
latency, and reliable connectivity [4], [5].

II. MOTION PLANNER

An advanced motion planner capable of computing collision
free, time-optimal, jerk-constrained trajectories to transport an
object between two points as fast as possible is implemented.

The advanced motion planner comprises a path planner and
a trajectory planner. The path planner generates a collision-
free geometric path, and the trajectory planner computes time-
optimal trajectories that adhere to velocity, acceleration, and
jerk constraints.

The path planning is performed using the Open Motion
Planning Library (OMPL) [6]. In this study, the C-Forest
planner [7], a parallel framework designed to accelerate single-
query, sampling-based shortest path planning, is utilized. The
C-Forest planner operates by simultaneously growing multiple
RRT* trees, [8], to efficiently find a shorter path. The output
of the path planner is a set of points that are interpolated to
create a path as illustrated in Fig. 1

The trajectory planner generates time-optimal trajectories
for the robot to follow the geometric path. The robot’s
dynamics are approximated as a kinematic double integrator
model, and the trajectory planning problem is formulated as an
optimization problem that minimizes the total traversal time
while satisfying constraints on joint velocity, acceleration, and
jerk. This optimization problem is solved using CasADi, [9],
and IPOPT, [10]. An example of the generated trajectories
alongside their respective limits can be seen in Fig. 2.
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Fig. 1. Given a start and end configuration and obstacles, the advanced path
planner computes a geometric path that connects the start point to the end
point while avoiding the obstacles. In this figure the obstacles are represented

as a point cloud to easily show the path, start and end points.

Joint trajectories of the Adv. Planner
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Fig. 2. An example trajectory for a robot joint, joint 3 is shown, where the first
plot illustrates the joint angle over time, the second plot shows the velocity,
and the third one showcases the acceleration. Along with the trajectories, the
limits of joint angle, velocity, and acceleration are plotted.

III. OFFLOADING

The advanced motion planning algorithm requires resources
such as a fast processor, sufficient RAM, and efficient multi-
threaded execution to run efficiently. Since the robot has
limited computational power, the advanced motion planner is
deployed on a platform with sufficient resources to support it.
Because the robot depends on the motion planner to perform
its movements, it is desirable to have computational resources
close to the robot to minimize delays and packet loss. This
makes edge computing an attractive deployment option instead
of the cloud due to its proximity to the robot.

In this setup, the edge server is positioned at the edge
of a network, specifically a 5G network, acting as a local
computational resource for offloading [2], [3]. To enhance
mobility and demonstrate feasibility, communication between
the edge and the robot is established using a private 5G
network provided by Ericsson.

However, offloading comes with risks, such as network
failures, optimization issues, or edge server unavailability. To

mitigate these risks, the robot has a local offloading agent,
a logical software unit, that determines whether the motion
planning should be offloaded or not based on the task at
hand. If no response is received from the advanced motion
planner, the agent also deploys the fallback local heuristic
motion planner. The overall architecture is presented in Fig. 3
to illustrates the idea.
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Fig. 3. When the IPC receives a pick-and-place command along with a list of
obstacles, the offloading agent evaluates the pick-and-place task and delegates
the motion planning to either the local heuristic or remote advanced motion
planner. The local planner also serves as a fallback if the remote planner fails
to provide trajectories on time.
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