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I. INTRODUCTION

Time-delays are known to have a detrimental effect on
feedback systems. In the context of networked cyber-physical
systems, delays can be injected by malicious adversaries and
detecting them early is an important challenge. Recently, it
was proposed to conceal the delay attack in the feedback
loop, for systems switching between open and closed loop
settings [1], and detecting such instances is the aim of
this paper. This paper proposes using Interacting Multiple
Model (IMM) filtering to detect delay injection attacks
in feedback control systems in an open loop setting. The
detection scheme is formalised, and a theoretical analysis of
the stationary distribution informs the choices of parameters.
The method is applied to a cruise control application, and
shows fast detection and a low false alarm probability. It is
compared to previous work on delay detection [1], [2].

The contributions of the paper are as follows:
1) The IMM-based scheme for delay attack detection is

formulated under a quickest change detection setting,
leveraging the posterior probabilities as the test statistic
for the detection rule;

2) Based on the underlying Hidden Markov Model
(HMM), the theoretical analysis provides guidelines
for tuning the hyperparameters of the HMM and the
detection threshold;

3) The numerical example on a safety-critical applica-
tion, cruise control, illustrates the applicability of the
method and shows good detection performance.

II. PROBLEM FORMULATION

In this paper, the linear state space model{
xt+1 = Axt +But + wt

yt = Cxt−δ(t) +Dut−δ(t) + νt,
(1)

is considered with independent white noise processes wt ∼
N (0, Q), νt ∼ N (0, R). The system model parameters
A,B,C,D are known. However, the observed output yt is
subject to a possibly time-varying delay δ(t) ∈ N that is
unknown. It should be noted that the delay is only applied in
the feedback path and thus only affects performance when
the feedback loop is closed. This can be seen in Fig. 1, where
the placement of the IMM detector is also visible.

The performance is evaluated by Average Detection Delay
(ADD), Probability of False Alarm (PFA) and Average Run
Length (ARL), which are all commonly used metrics in
quickest change detection [3].

State propagation
xt+1 = Axt +But + wt

(Delayed) Observation yt+1 =
Cxt+1−δ(t) +Dut+1−δ(t) + νt

State estimator

Controller
ut+1 = f(x̂t+1, ref)

IMM detector

Automatic ut

Manual ut

open/closed

xt+1

yt+1x̂t+1

Fig. 1: Block diagram of the model. The attack only affects
the observation.

III. DELAY DETECTION BY ESTIMATION

The delay detection problem is approached by considering
the possible integer delays δ(t) as modes st = 0, 1, 2, ..., D
of the system. An attack is then understood as a change from
the nominal mode to one of the delay modes. By estimating
the probabilities of each mode at each time, a detection
scheme is constructed. An attack detector is then defined
by thresholding the posterior probability of the system being
in the nominal mode, with the threshold a design parameter.
To obtain the required probabilities, IMM filtering is applied.

A. Interacting Multiple Model (IMM)

The general idea of IMM is to apply Kalman filters for si-
multaneous estimation under several different hypotheses, or
modes, of the system dynamics, with the system potentially
switching between the modes. The potential of switching
is handled by combining previous estimates based on the
probabilities of having been in the mode. IMM is described
in more details in [4] and in the full paper.

B. Construction of the Markov Model

The transition probabilities model how the delay modes
may change. By focusing on the transitions between the
nominal (zero delay) and attack (non-zero delay) modes, s =
0 and s > 0, respectively, P(st = i|st−1 = j) is modelled
by p0, the probability of remaining in the nominal mode,
and p1, the probability of transitioning from an attacked
to the nominal mode. Transitions between delayed modes
are modeled by a uniform distribution. This formulation



Fig. 2: A single trajectory of how the nominal probability
change over time, using θ = 0.99 and a delay attack of
0.2 seconds being introduced after 200 seconds. The upper
and lower bound for reasonable threshold derived in the full
paper are shown for reference.

circumvents excessive modelling requirements, as only two
parameters are used.

The transition probabilities form a Markov chain. It can
be shown that to achieve a desired stationary distribution(
π̄ 1− π̄

)T
the parameters should be chosen as

0 ≤ p1 = (1− p0)
π0

1− π0 ≤ 1 (2)

where the probability of remaining in the nominal mode can
be selected freely as

p0 = (1− θ) · 1 + θ ·
(
1− π0

1− π0

)
, (3)

where θ ∈ [0, 1]. A small θ corresponds to slow movement
between modes and vice versa, and (1−θ) can be interpreted
as a temperature of the system, similar to that of the
Boltzmann distribution.

Further, by analysing the stationary distribution under
attack, a range for reasonable thresholds of the detector can
be obtained. This range is visualised in Fig. 2.

IV. DELAY DETECTION IN CRUISE CONTROL
A. Simulation Results

The simulations are for a linearised cruise control system,
for which the derivation can be found in [1]. See the full
paper for details on model parameters and hyperparameter
tuning.

All simulation results consider a delay attack defined as a
step function, with δ(t) = 0 until some attack time t∗, when
a fixed delay is inserted.

In Figure 2, a single trajectory of the IMM filter estimate
is shown. It is clear from the figure that the filter is quick
to adjust the probabilities when the attack is introduced. A
threshold of 0.4 is supported by this trajectory as well.

In Table I, the estimated ADD and PFA are shown after
running the model for 500 runs for various injected delays. It
should be noted that the two largest delays in this simulation,
1.1 and 1.2 seconds, is higher than any of the hypothesises
used by the model, and the detector performs slightly worse
for these.

TABLE I: Estimated ADD and PFA over 500 runs, for
varied delays attacks inserted at a uniformly random time.
In parenthesis, the standard deviation is reported.

Delay [s] ADD [s] PFA []
0.1 108(±81.7) 0.0027(±0.052)
0.2 3.67(±2.25) 0.0036(±0.060)
0.3 3.50(±2.17) 0.0028(±0.051)
0.4 3.47(±2.08) 0.0026(±0.051)
0.5 3.51(±2.11) 0.0028(±0.053)
0.6 3.47(±2.11) 0.0024(±0.049)
0.7 3.52(±2.21) 0.0024(±0.049)
0.8 3.48(±2.20) 0.0024(±0.049)
0.9 3.45(±2.10) 0.0028(±0.053)
1.0 3.42(±2.06) 0.0016(±0.040)
1.1 4.07(±2.71) 0.0038(±0.062)
1.2 4.79(±3.45) 0.0024(±0.049)

Average 12.38 0.0027
Average excl. 0.1 3.67 0.0027

B. Comparison with Existing Detection Schemes

Previous work on delay detection builds on identification
of the system parameters. In [1], identification is applied
to the same vehicle model as in this paper, but assuming
unknown system dynamics. This gave a detection time
exceeding 100 seconds on an example trajectory, which is
significantly worse than the results for the IMM framework.
They are not fully comparable, since the IMM approach
assumes known model dynamics, but it shows that much
better performance is possible when the dynamics are known.

It is harder to compare the current work to that of [2] since
those experiments are not performed on the same application
and do not use a fixed-threshold detector. However, using that
method, it is possible to note a difference in the distribution
after around 10 seconds, only slightly worse than the IMM
method, but only if the delay is inserted momentarily. A
gradually deployed attack is not noticeable since the method
assumes a nominal mode for the previous time step so
any uncertainty of previous modes are discarded. This issue
should not be present in IMM, since the uncertainties of the
mode from past time steps are carried over to future steps.

V. FUTURE WORK

Interesting directions for future work are to find theoretical
bounds on the false alarm probability given the threshold, or
to detect delay attacks in closed loop settings using the IMM
approach.

REFERENCES

[1] T. Wigren and A. Teixeira, ”Feedback path delay attacks and detec-
tion” in IEEE conf. on Decision and Control, 2023, pp. 3864-3871.

[2] E. Korkmaz, M. Davis, A. Dolgikh, and V. Skormin, “Detection and
mitigation of time delay injection attacks on industrial control systems
with PLCs” in Computer Network Security, Cham.: Springer, 2017, pp.
62-74.

[3] V. V. Veeravalli and T. Banerjee, “Quickest change detection” in
Academic Press Library in Signal Processing: Volume 3, Elsevier,
2014, pp. 209-255.

[4] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, “IMM estimator versus
optimal estimator for hybrid systems”, Trans. Aerosp. Electron. Syst.,
vol. 41, no. 3, pp. 986-991, Jul. 2003.


