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Abstract: This extended abstract addresses the positive synchronization of interconnected
systems on undirected graphs. For homogeneous positive systems, a static feedback protocol
design is proposed, based on the Linear Regulator problem. The solution to the algebraic
equation associated to the stabilizing policy can be found using a linear program. Simulations
on large regular graphs with different nodal degree illustrate the proposed results.
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1. INTRODUCTION

1.1 Motivation

Synchronization is a critical behavior in many dynam-
ical systems and has broad applications across various
domains Ren and Beard (2005); Tegling et al. (2023);
Fabiny et al. (1993); Fax and Murray (2004). This work
investigates discrete-time multi-agent systems with ho-
mogeneous, linear time-invariant dynamics, focusing on
achieving synchronization of agent states using only rel-
ative measurements.

The synchronization approach relies on solving the discrete-
time Linear Regulator problem Gurpegui et al. (2024),which
is analogous to the algebraic Riccati equation in the
Linear Quadratic Regulator framework for positive sys-
tems Berman and Plemmons (SIAM, 1994); Luenberger
(1979). The primary contributions of this work include a
static feedback protocol derived from the Linear Regulator
problem, which is solvable via linear programming (Proto-
col 1), and necessary and sufficient conditions ensuring the
positivity of each agent’s trajectory for any nonnegative
initial conditions.

2. MODEL DESCRIPTION

2.1 Graph Description

This work focuses on families F ⊂ G of connected,
undirected graphs. Among these graph families, we are
specifically interested in those for which the eigenvalues
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of the associated regularized Laplacian matrix D (Saberi
et al., 2022, Ch. 3) satisfy upper and lower bounds.

Definition 1. The set of undirected graphs for which the
associated row-stochastic matrix D satisfies the property
that all eigenvalues, except for µ1 = 1, have an absolute
value smaller than β and greater than γ is defined by

G[γ,β] = {G ∈ G |γ ≤ µi(G) ≤ β, ∀i > 1} .
where γ ∈ (−1, β], β ∈ (0, 1).

Expressions for γ and β has been studied in the litera-
ture—See e.g. Banerjee and Mehatari (2016).

2.2 Multi-agent Systems

We consider homogeneous multi-agent system (MAS) com-
posed by an arbitrary number of identical, linear time-
invariant positive agents. The dynamics of each agent
i = 1, . . . , N are described by

xi(t+ 1) = Axi(t) +Bui(t); A ∈ Rn×n
+ , B ∈ Rn×m (1)

where xi ∈ Rn, ui ∈ Rm are, respectively, the state and
input vectors of agent i.

Agents access the relative information of their neighbors
through full-state measurements. Specifically, each agent i
has access to the quantity

ζi(k) =
1

1+
∑N

j=1
wij

∑
k∈Ni

wik(yi(t)− yk(t)). (2)

3. PROBLEM FORMULATION AND MAIN RESULT

This paper addresses the following two problems:

Problem 1. (Synchronization Problem). Design a linear
feedback controller of the form

ui(t) = Fζi(t) (3)

that achieves state synchronization, i.e.

lim
t→∞

[xi(t)− xj(t)] = 0, ∀i, j ∈ {1, . . . , N} . (4)

while satisfying the constraint:

|ui| ≤ E |ζi| , (5)



where E is a design matrix that enforces bounded control
inputs based on the relative measurements ζi.

Protocol 1. (LR-based protocol). Consider the MAS de-
scribed by (1) and (2) with A ∈ Rn×n

+ and B ∈ Rn×m.

Let E ∈ Rm×n
+ , s ∈ Rn

+ such that s > 0 and D be the row
stochastic matrix associated with a graph G ∈ G[γ,β] with
N agents. Suppose

A− (1− γ)|B|E ≥ 0 (6)

γ ∈ (−1, 1). The LR-based protocol is given by

ui = −ρKζi, (7)

where ρ ≥ 1
1−β , β ∈ (0, 1) and K follows from the Linear

Regulator setting in Li and Rantzer (2024) with Ã = A,

B̃ = B, Ẽ = 1
ρE and s > 0.

Theorem 2. Consider a family of graphs F ⊆ G[γ,β] and
the MAS described by (1) and (2). If the pair (A,B)
is E-stabilizable then the protocol (7) solves the state
synchronization problem for any undirected graph G ∈ F .
Moreover, the synchronized trajectory is given by

xs(t) = At 1

N

∑N

i=1
xi(0). (8)

and each ui satisfies the bound (5).

4. SIMULATIONS

Consider the MAS (1) composed by 150 agents and de-
scribed by

A =

[
0.4 0.8
0.4 0.7

]
; B =

[
−0.6 0.002 −0.2
−0.4 0.005 0.03

]
; E =

[
0.07 0.2
0.3 0.3
0.3 0.01

]
with randomly generated initial conditions in the interval
[0, 1]. Consider also a connected undirected graph G in
the family of regular graphs of degree d = 7, 20 denoted
by FR ⊆ G[γ,β]. The matrix A is unstable with spectrum
σ(A) = {−0.035235, 1.135235}.
Let the eigenvalues of every row stochastic matrix D
associated with G ⊆ FR be upper bounded by β = 0.25
such that ρ ≥ 1/(1−β), in particular ρ = 3.83. To solve the
state synchronization problem, the LR-based Protocol 1 is
implemented. Consider s = 1 > 0, and note that

Ẽ =
1

ρ
E =

[
0.02 0.05
0.07 0.07
0.07 0.003

]
such that A − |B|Ẽ is nonnegative. The linear program
in Li and Rantzer (2024), is maximized by a vector p∗ =
[70.71, 128.27], and results in

K =

[−0.07 −0.2
0.3 0.3
−0.3 −0.01

]
.

Figure 1 shows the evolution of the first and second states
for each of the 150 agents in an interconnected system,
where each agent is connected to 7 and 20 neighbors,
respectively. It is clear from the figure that synchronization
is achieved more rapidly as the nodal degree increases.
The distance from the trajectories to the synchronized
trajectory is represented in Figure (2).
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