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Luca Claude Gino Lebon and Claudio Altafini ∗

Disturbance decoupling over networks. We consider a digraph G = (V , E) of nodes
V = {v1, . . . , vn} to which we associate a linear control system with state update matrix
equal to the (weighted) adjacency matrix A of the graph. We associate one state variable
xi of the vector x = [x1 . . . xn]

⊤ to each node vi of the graph. We consider the following
linear system

ẋ = Ax+Bu+Dw

y = Cx

z = Tx.

(1)

D and T are elementary matrices that identify, respectively, the sets of disturbances and
targets acting on G, denoted D and T . Similarly, B and C are also elementary matrices
that identify, respectively, the sets of control inputs and output nodes on G, denoted I
and O. In our setting, T contains nodes of special importance in the network, and the
task of this work is to find graphical conditions to isolate them from the effect of the
disturbance w. Formally, we look for a control law u(t) that brings the transfer function
from the disturbance vector w to the vector of targets z to zero for all frequencies.
This problem is an example of a disturbance decoupling problem (DDP) over networks.
The conditions for solving the DDP available in geometric control vary depending on
the control law taken into account [1]. Such conditions are based on controlled and
conditional invariance, or on the existence of a so-called (C,A,B)-pair. The strategies
under analysis are state feedback (DDPSF), output feedback (DDPOF), and dynamical
feedback (DDPDF), whose specifics are summarized in Table 1. One contribution of
this work is to reformulate these conditions in graphical terms, building on the setting
proposed in [2]. Another is to identify the sets of input nodes I (and, when needed, of
output nodes O) that solve the DDP with minimum input (and output) cardinality.

Optimization problem reformulation. The simplest problem to solve is the DDPSF.
Here, our task is to choose the set of control nodes I so that the existence of a state ma-
trix F that decouples T from D is guaranteed. We show that a necessary and sufficient
condition for decoupling is that each D-to-T path has nonempty intersection with I, i.e.,
at least a control node per path needs to be present. Assuming that the full state is
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accessible at each time t can be quite unrealistic in practical applications. To circum-
navigate such limitation, the second approach consists in solving the DDPOF, that is,
computing u = −Gy, where the output vector y is from a second set of nodes O to be
chosen. We show that the feasibility (that is, the existence of a matrix G that decouples
T from D) is guaranteed in this case by the existence of at least one sub-path of length 1
of the form {vp, vp+1} with vp ∈ O and vp+1 ∈ I for each D-to-T path. A third approach
consists of designing a dynamical system (a compensator), whose output is the control
input that achieves the decoupling. Graphically, feasibility in this case is guaranteed if
in each D-to-T path (labeled locally so that it is sorted in ascending order from the node
in D to the node in T ) there exist at least an output node and an input node and the
output node closest to D appears before the input node closest to T .
Each of the aforementioned disturbance-decoupling sub-problems admits a further graph-
ical interpretation. Essentially, feasible solutions I (for DDPSF) or I, O (for DDPOF
and DDPDF) are cuts in G of the flows from D to T . Within an optimization frame-
work, the cost functions to be minimized are the edges to be cut to achieve feasibility or
the cardinality of the input/output sets of nodes. In such conditions, we show that the
optimal solutions can be computed in polynomial time by means of readaptations of the
mincut/maxflow algorithms.

DDPSF DDPOF DDPDF

Static Static Dynamic

u = −Fx u = −Gy
˙̂x = Kx̂+ Ly

u = −Mx̂−Gy

Optimization problem’s cost functions

|I| |I|+ |O| |I|+ |O|

Table 1: Key features of the disturbance decoupling sub-problems.
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