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Abstract— This paper [1] addresses the secure state estima-
tion problem for continuous linear time-invariant systems with
non-periodic and asynchronous sampled measurements, where
the sensors need to transmit not only measurements but also
sampling time-stamps to the fusion center. This measurement
and communication setup is well-suited for operating large-
scale control systems and, at the same time, introduces new
vulnerabilities that can be exploited by adversaries through
(i) manipulation of measurements, (ii) manipulation of time-
stamps, (iii) elimination of measurements, (iv) generation of
completely new false measurements, or a combination of these
attacks. To mitigate these attacks, we propose a decentralized
estimation algorithm in which each sensor maintains its local
state estimate asynchronously based on its measurements.

I. INTRODUCTION & PROBLEM FORMULATION

Many real-world large-scale systems, such as power sys-
tems, water distribution networks, and transportation net-
works, are examples of cyber-physical systems where physi-
cal processes are tightly coupled with digital devices. These
systems are monitored and controlled via wired or wireless
communications, leaving the systems vulnerable to mali-
cious attackers. The asynchronous and non-periodic sampling
scheme opens up new opportunities for the adversaries.
The challenge of securely estimating states under malicious
activities will be addressed in this paper, given their crucial
role in control systems.

Let us denote the state index set as J ≜ {1, 2, . . . , n} and
the sensor index set as I ≜ {1, 2, . . . ,m}. The LTI system
is modeled as follows:

ẋ(t) = Ax(t) + w(t), w(t) ∼ N (0, Q) (1)
yi(t) = Cix(t) + vi(t), ∀ i ∈ I, (2)

where v(t) ∼ N (0, R). The sensors sample and send data
packets to an estimator in a non-periodic and asynchronous
manner, which contain not only measurements but also their
sensor indices and sampling time-stamps. More specifically,
the estimator receives measurement triples from sensor i ∈ I,
which has the following form:

measurement triple: (i, t, yi(t)), (3)
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Fig. 1: Examples of spatio-temporal false data attacks that
can manipulate both time-stamps and measurements.

where i is the sensor index, t is the sampling time-stamp,
and yi(t) is the measurement given by sensor i. In this paper,
we propose a novel false data attack model for such systems
which manipulate elements in the measurement triple (3) (see
Fig. 1). This attack model includes both integrity attacks
such as false-data injection, and availability attacks such as
DoS attacks. To deal with such false data attacks, we propose
an estimation scheme in the next section.

II. SECURE STATE ESTIMATION

A. Asynchronous sampled-data Kalman filter

We define the measurement availability index ϕi[k] ∈
{0, 1} where ϕi[k] = 1 if sensor i has a measurement with
time-stamp tk and ϕi[k] = 0 otherwise. At each sampling
instant k, we have the following asynchronous sampled-data
Kalman filter (KF):

Prediction steps:
x̂-[k] = A[k − 1]x̂[k − 1], (4a)

P-[k] = A[k − 1]P [k − 1]A⊤[k − 1] +Q[k − 1], (4b)
Update steps:

K[k] = P-[k]C
⊤[k]

(
C[k]P-[k]C

⊤[k] +R[k]
)†
, (4c)

P [k] = (I −K[k]C[k])P-[k], (4d)
x̂[k] = x̂-[k] +K[k] (y[k]− C[k]x̂-[k]) , (4e)



B. Linear decomposition

Define

Π[k − 1] ≜ A[k − 1]−K[k]CA[k − 1]. (5)

Gi[k] ≜ Π[k − 1]Gi[k − 1]A−1[k − 1] +Ki[k]Ci. (6)

W [k + 1] ≜ Π[k]W [k]Π⊤[k] +Q[k], (7)

where Q[k] is based on system parameters. The local esti-
mator at sensor i is defined as:

ζi[k] ≜ Π[k − 1]ζi[k − 1] +Ki[k]yi[k], (8)

which is initialized as ζi[0] = 0. From (4e), (5), and (8), one
obtains the following property

x̂[k] =

m∑
i=1

ζi[k]. (9)

C. Least-square fusion

The state estimation provided by the sampled-data KF
(4e) can be recovered by the minimizer xls to the following
optimization problem [1, Thm. 1]:

minimize
xls[k],θ[k]

1

2
θ[k]⊤W−1[k]θ[k] (10a)

subject to ζ[k] = Gxls[k] + θ[k] (10b)

D. Secure least-square fusion

All the false data attacks in Fig. 1 can be isolated into local
estimator (8) whose corresponding sensor is under attack
[1, Sec. IV]. This enables us to introduce the following ℓ1-
regularization least-square optimization problem:

minimize
x̌[k], µ[k], ϑ[k]

1

2
µ[k]⊤ W−1[k]µ[k] + γ ∥ϑ[k]∥1 (11a)

subject to ζ[k] = Gx̌[k] + µ[k] + ϑ[k]. (11b)

The following theorem provides a sufficient condition on
the parameter γ in (11) under which the solutions to (10)
and (11) are identical in the absence of attacks.

Theorem 1: Consider the least square problems (10) and
(11) with a given γ > 0, let (xls[k], θ[k]) be the minimizer

for the problem (10) and (x̌[k], µ[k], ϑ[k]) be the minimizer
for the problem (11). In the absence of the attacks, if the
following condition holds

γ > ∥W̃−1[k]θ[k]∥∞, (12)

then x̌[k] = xls[k], µ[k] = θ[k], and ϑ[k] = 0. ◁
Let us make use of the following definition of a function

that will help us in evaluating the minimizer x̌[k] of (11)
against spatio-temporal attacks in the subsequent theorem.

Definition 1: Given an n-dimensional vector x ∈ Rn and
a positive integer a, we define a function ha : Rn → R such
that ha(x) takes the a-th largest value of the vector x.

Theorem 2 (Secure fusion): Consider the least square
problems (10) and (11) with a given γ > 0, let (xls[k], θ[k])
be the minimizer for the problem (10) in the absence
of attacks and (x̌[k], µ[k], ϑ[k]) be the minimizer for the
problem (11) in the presence of attacks. In the presence of
attacks, the error between xls[k] and x̌[k] has the following
upper bound:∣∣[x̌[k]]

j
−
[
xls[k]

]
j

∣∣ ≤max
{∣∣hc

(
ηj [k]

)∣∣, ∣∣− hc

(
− ηj [k]

)∣∣},
where ηj [k] is a |Ej \ C|-dimensional vector where its i-th
element [ηj [k]]i ≜ [θi[k]]j + γ e⊤n(i−1)+jW̃ [k]ϑ̌[k] (∀ i ∈
Ej \ C), with

ϑ̌[k] ∈ ∂∥V [k]ζf [k]− ϑ[k]
∥∥
1
, c ≜

⌈ |Ej \ C| − |Ej
⋂

C|
2

⌉
.

◁

III. SIMULATION RESULTS

We show an example of state estimation problem in elec-
tricity monitoring in Fig. 2 (left). To validate the efficiency
of the proposed state estimation in the previous section,
we implement it in the IEEE 14-bus system with false
data attacks on buses 2-5 (see Fig. 2 right-top corner). The
estimation error is shown in Fig. 2 right-bottom corner where
the state estimate provided by (11) is resilient to attacks.
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Fig. 2: An example in electricity consumption monitoring (left) and simulation results (right).
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