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Abstract— The dual control problem, first introduced by
Feldbaum in the 1960s, is recognized as encapsulating the
“exploration versus exploitation” dilemma, central to online
learning and control. Numerous heuristic-based exploration
methods have been developed to facilitate active learning. How-
ever, the theoretically optimal solution provided by dynamic
programming (DP) remains computationally intractable for
most problems due to the curse of dimensionality. In this
paper, we revisit the DP framework within the context of regret
minimization for a simple real-time optimization problem,
aiming to identify valuable insights and uncover new avenues
for simplified DP-based exploration strategies. By deriving the
two-horizon DP solution in our simple setting, we observe
that the optimal input is obtained by solving an optimization
problem composed of two distinct components representing
exploration and exploitation separately, clearly highlighting
their inherent trade-off. For longer horizons, receding horizon
control based on the iterative application of the two-horizon
DP provide possible approximations, reducing computational
complexity while yielding useful suboptimal control policies. A
key advantage of the DP-based exploration method is its ability
to automatically adjust the exploration based on the current
exploitation and system uncertainty. The proposed method is
studied numerically through comparative evaluations against
classical heuristic exploration methods from the literature.

I. INTRODUCTION

Learning-based control, a powerful approach for address-
ing a wide range of scientific and industrial challenges
[1], has a long history rooted in adaptive control [2]. A
key challenge in this framework is the inherent system
uncertainty, which requires control input to balance its dual
effects: actively reducing uncertainty while ensuring control
performance. This is the classic, yet still open, dual control
problem, initially introduced by Feldbaum in the 1960s [3]. It
has been framed as the fundamental trade-off between explo-
ration and exploitation (E2): (i) exploitation, which aims to
achieve the best possible short range control performance,
and (ii) exploration, i.e., actively exciting the system to
enhance system information helping to improve long range
control performance, at the cost of compromising short-term
control performance [4].

A theoretical framework based on DP is provided by Feld-
baum to optimally balance E2 [3]. Although DP guarantees
theoretical optimality, its practical applicability is severely
limited by the well-known curse of dimensionality [2]. We
focus on a simplified, scalar, static, Real-Time Optimization
(RTO) problem [5], [6]. RTO addresses the challenge of
optimizing plant operating conditions when the input-output
steady-state relationship is dependent on unknown parame-
ters that must be learned from noisy data. Our contributions
are twofold: (i) We derive a two-horizon DP solution for

a simple RTO problem, revealing that the optimal input is
achieved by balancing two distinct components associated
with E2, which clearly demonstrates their trade-off. (ii) To
address longer horizons, we propose suboptimal online input
policy through a receding horizon method, which iteratively
applies the two-horizon DP solution.

II. A SIMPLE DUAL CONTROL PROBLEM

We focus on the following simple dual control problem
with a tractable DP horizon T = 2:

Φ(u, θ0) = u2 + 2θ0u+ 2θ20,

yt = θ0ut + et, et ∼ N (0, 1).

The optimal input, assuming perfect knowledge of the true
parameter θ0, is simply found as U(θ0) = −θ0. However,
due to uncertainty in θ0, this optimal input is unknown
in practice. A common exploitation policy in data-driven
control is the certainty equivalent (CE) controller, which
relies on the estimate θ̂t and computes the input as uCE

t =
−θ̂t. In the DP framework, θ0 is treated as a realization of
the prior conditional distribution p(θ | Z0) = N (θ̂1, P1),
where θ̂1 and P1 denote the prior mean and variance, re-
spectively. After applying u1 and observing y1, the posterior
distribution is updated as p(θ | Z1) = N (θ̂2, P2), where
Z1 = {Z0, u1, y1} and θ̂2, P2 denote the posterior mean and
variance, respectively. The Gaussian assumptions guarantee
that Bayesian updates preserve the Gaussian form, leading
to explicit expressions for the posterior mean and variance:

P2 =
P1

1 + P1u2
1

, θ̂2 = P2

( θ̂1
P1

+ u1y1
)
. (1)

A. Dynamic Programming for T = 2 (DP-2)
(i) At step T = 2, the general cost-to-go function is

V2(θ̂2, P2) = min
u2

Eθ[Φ(u2, θ) | Z1]

=min
u2

[u2
2 + 2θ̂2u2 + 2(θ̂22 + P2)] = θ̂22 + 2P2.

The corresponding optimal solution is uDP
2 = −θ̂2, which

coincides with the CE input.
(ii) At step t = 1, the Bellman equation, used to recursively
obtain the earlier optimal input, becomes:

V1(θ̂1, P1) = min
u1

{Eθ[Φ(u1, θ) | Z0]+Ey1 [V2(θ̂2, P2)|Z0]},

Expanding the first expectation term leads to

Eθ[Φ(u1, θ) | Z0] = u2
1 + 2θ̂1u1 + 2(θ̂21 + P1). (2)



Fig. 1: The CE input uCE
1 and the DP-2 input uDP

1 under
various initial distribution N (θ̂1, P1).
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Fig. 2: Trajectories over horizon T = 4 generated by CE,
RDP-2 and DECAY with the true parameter θ0 sampled from
two prior conditions N (0.1, 2) and N (5, 2).

The second expectation implicitly depends on u1, since both
its arguments, θ̂2 and P2, are functions of u1, as indicated
by (1). After applying a selected input u1, the observation y1
is stochastic due to the noise and parameter uncertainty. Thus
the posterior mean θ̂2, updated in (1), is a random variable,
that should be averaged w.r.t. y1 to obtain

Ey1
[V2(θ̂2, P2) | Z0] = Ey1

[θ̂22 + 2P2 | Z0] (3)

=(Ey1
[θ̂2 | Z0])2 + Vary1

(θ̂2 | Z0) + 2P2 = θ̂21 + P1 + P2,

where the last equality is based on the following equations

Ey1 [θ̂2 | Z0] = θ̂1, Vary1(θ̂2 | Z0) + P2 = P1,

Combining (2), (3), the cost-to-go function at t = 1 becomes,

V1(θ̂1, P1) = min
u1

[(u2
1 + 2θ̂1u1 + P2) + 3(θ̂21 + P1)].

where P2 = P1

1+P1u2
1

and the term 3(θ̂21 + P1) is a constant.
This clearly sheds light on the involved trade-off: (i) u1

should be close to the exploitation input −θ̂1 to minimize
the current cost, and (ii) a large magnitude of u1 is desirable
to reduce P2, i.e., the uncertainty in the next step.

Given that the maximum tractable DP horizon is two (i.e.
N = 2), we approximate longer-horizon DP solutions with
a receding horizon control strategy, named RDP-2.

III. NUMERICAL RESULTS

In MC simulations, we first sample 500 true system
parameters from the prior distribution N (θ̂1, P1). For each
true system, we conduct 500 MC simulations by generating
500 noise realizations. We use expected regret as a criterion.

For the horizon T = 2, DP-2 is theoretically optimal.
For a longer horizon T = 10, we evaluated the DP-
based methods by comparing them with five established

Fig. 3: Expected regret difference (CE minus DP-2) from
MC simulations under various initial distribution N (θ̂1, P1).
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Fig. 4: Expected regret comparison using six methods across
twelve different system configurations over horizon T = 10.

exploration strategies: CE input, decaying binary noise ex-
ploration (DECAY), binary immediate exploration (IMM),
upper confidence bound (UCB), Thompson sampling (TS).

The RDP-2 method exhibits encouraging performance
in this small study. However, it is important to note that
no single suboptimal method is guaranteed to consistently
outperform the others for long-horizon cases. That is because
all these approaches are just approximations of the optimal
but intractable DP solution. RDP-2 distinguishes itself by
adaptively incorporating system feedback, enhancing its ef-
fectiveness in dynamically adjusting exploration. This insight
highlights the potential for developing more sophisticated
exploration strategies to further leverage adaptive learning
and system feedback for decision-making under uncertainty.
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