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Abstract— This work proposes a robust data-driven tube-
based zonotopic predictive control (TZPC) approach for
discrete-time, linear time-invariant (LTI) systems with unknown
dynamics, subject to bounded disturbances and input/state
constraints. TZPC is designed to guarantee recursive feasibility
and closed-loop stability.

I. INTRODUCTION

Data-driven MPC has been extensively studied, with liter-
ature covering both noise-free [1] and noisy scenarios [2],
[3]. Recent studies have leveraged zonotope properties to
handle unknown but bounded disturbances in both linear [2],
[4] and nonlinear systems [5]. Notably, [2] introduced a ro-
bust data-driven zonotopic predictive control (ZPC) scheme
that ensured robust constraint satisfaction via the propa-
gation of data-driven reachable sets, but lacked guarantees
on recursive feasibility and closed-loop stability. To address
the latter limitation, [4] introduced a tube-based zonotopic
data-driven predictive control (TZDDPC) approach, which
achieved closed-loop stability. Nevertheless, the issue of
recursive feasibility remained unaddressed.

The proposed TZPC approach addresses both limitations.
It ensures recursive feasibility and establishes robust expo-
nential stability of the closed-loop system by integrating suit-
able terminal ingredients into the control design. Compared
to prior methods, TZPC implicitly integrates reachability
concepts, leading to notable computational efficiency without
compromising robustness. The overall proposed approach
consists of two phases: An initial learning phase, which con-
structs a zonotopic over-approximation of all models consis-
tent with past input and noisy state data; and a control phase,
where a robust optimization problem is solved using the
model obtained in the learning phase and terminal ingredients
to ensure constraint satisfaction, recursive feasibility, and
robust stability. This extended abstract provides a summary
of the recent results reported in [6].

II. PROBLEM FORMULATION

We consider the discrete-time linear control system

x(k + 1) = Ax(k) +Bu(k) + w(k), (1)

where A ∈ Rnx×nx and B ∈ Rnx×nu are unknown, x(k) ∈
Rnx and u(k) ∈ Rnu , and w(k) ∈ Rnx are respectively
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the state, the control input and a bounded disturbance. The
system is subject to state and input constraints:

x(k) ∈ X ⊆ Zx, u(k) ∈ U ⊆ Zu, (2)

where Zx = ⟨cZx
, GZx

⟩ and Zu = ⟨cZu
, GZu

⟩ denote
time-invariant zonotopic sets representing domains of con-
trol inputs and states, respectively. Zonotopes are defined
as affine transformations of unit hypercubes and take the
form Z = ⟨c,G⟩, where c is the center and G is the
generator matrix. The disturbance is bounded within a known
zonotope: w(k) ∈ Zw = ⟨cZw

, GZw
⟩, with 0 ∈ Zw, and

(A,B) is assumed to be controllable.
The goal is to design a receding horizon optimal controller

that guarantees recursive feasibility and robust exponential
stability, using only input and state data. We assume access
to a input-state trajectory of length T + 1, and define:

X+ =
[
x(−T + 1) x(−T ) · · · x(0)

]
,

X− =
[
x(−T ) x(−T + 1) · · · x(−1)

]
,

U− =
[
u(−T ) u(−T + 1) · · · u(−1)

]
,

W− =
[
w(−T ) w(−T + 1) · · · w(−1)

]
.

We stack the data as D− =
[
X⊤

− U⊤
−
]⊤

, assuming
rank(D−) = nx + nu. Although the disturbance sequence
olong the trajectory is unknown, it is captured by a matrix
zonotope W− ∈ Mw = ⟨CMw

, GMw
⟩, obtained through

the concatenation of multiple noise zonotopes Zw.

III. ROBUST DATA-DRIVEN TUBE-BASED PREDICTIVE
CONTROL

This section describes the novel TZPC approach for the
unknown linear system (1). This approach consists of an
offline learning phase and an online control phase.

Instead of relying on an explicit model, the learning
phase leverages measured input-state data to derive a matrix
zonotope, a set-valued over-approximation of all possible
system matrices consistent with the data and bounded dis-
turbances [2]. Specifically, given input-state data, the set
MD = (X+⊕−Mw)D

†
− captures all system models, where

⊕ denotes the Minkowski set addition.
As standard MPC, a nominal model M̄ =

[
Ā B̄

]
is

chosen from MD to define the nominal dynamics:

x̄(k + 1) = Āx̄(k) + B̄ū(k). (3)

We assume the existence of a common stabilizing feedback
gain K such that the closed-loop nominal system is stable
for all models in MD. The control policy is then defined as:

u(k) = ū(k) +K(x(k)− x̄(k)), (4)



Algorithm 1 Data-driven Tube-Based Zonotopic Predictive
Control (TZPC)
Input: Prediction horizon N . Feedback gain K, Constraints
U , X , and XN . Robustly positive invariant set S.

1: while t ∈ Z≥0 do
2: Solve the optimal control problem (7).
3: Apply u∗(t) = ū∗(t|t) + K(x(t) − x̄∗(t|t)) to the

system (1).
4: Increase the time step t = t+ 1.
5: end while

which ensures that the true system trajectories remain within
a bounded tube centered around the nominal trajectory.

The mismatch ∆M between the true and nominal models
is rigorously bounded using a zonotopic description:

∆M

[
x(k)
u(k)

]
∈ ZM ⊕Zϵ, (5)

where ZM ⊕ Zϵ over-approximate the model mismatch for
all (x, u) ∈ Zx ×Zu. The resulting error dynamics are:

e(k + 1) = ĀKe(k) + ϕ(k), (6)

with ϕ(k) = ∆M

[
x(k)
u(k)

]
+ w(k) ∈ Zϕ = ZM ⊕ Zϵ ⊕ Zw,

and ĀK = Ā + B̄K. A robustly positively invariant (RPI)
set S is then computed for the error dynamics (i.e., ĀKS ⊕
Zϕ ⊆ S), ensuring the true state remains within a bounded
neighborhood of the nominal state trajectory.

In the online control phase, a robust data-driven predictive
control problem is formulated around the nominal system.
The optimization considers tightened state and input con-
straints to ensure robust satisfaction of the original con-
straints:

min
ūt,x̄t

t+N−1∑
k=t

ℓ(x̄(k|t), ū(k|t))+ℓN (x̄(t+N |t)) (7a)

s.t. x̄(k + 1|t) = Āx̄(k|t) + B̄ū(k|t), (7b)
ū(k|t) ∈ U ⊖KS, (7c)
x̄(k|t) ∈ X ⊖ S, (7d)
x(t) ∈ x̄(t|t)⊕ S, (7e)
x̄(t+N |t) ∈ XN ⊆ X ⊖ S. (7f)

Here, ⊕ and ⊖ denote Minkowski set addition and differ-
ence, respectively; ℓ and ℓN are the stage and terminal cost
functions; and XN is the terminal constraint set. The problem
is solved in a receding horizon fashion (Algorithm 1), with
the optimal solution at time t given by (ū∗

t , x̄
∗
t ).

Theorem 1: Under standard terminal conditions (e.g., in-
variance of XN and decrease of ℓN under feedback gain K),
and assuming that the problem (7) is feasible at initial time
t = 0, the following closed-loop conditions hold:

(i) The problem (7) is feasible at any t ∈ Z≥0;
(ii) The closed-loop trajectory satisfies the constraints, i.e.,

x(t) ∈ X and u(t) ∈ U , ∀t ∈ Z≥0;
(iii) The set S is robustly exponentially stable for the result-

ing closed-loop system.

The proof can be found in [6].
To evaluate the effectiveness of the proposed approach, we

consider a benchmark two-dimensional state-space example,
used to compare the performance of TZPC against ZPC
[2]. The results highlight the proposed controller’s ability
to maintain robust performance in the presence of external
disturbances1. Simulation results are shown in Fig. 1. Addi-
tionally, we repeated the execution time analysis from [4],
reporting maximum solver times of 40 min (ZPC), 78.26 min
(TZDDPC), and 0.15 min (TZPC), highlighting its significant
computational efficiency.

(a)

(b)

Fig. 1: Comparison between ZPC and TZPC. (a): The reach-
able sets for the closed-loop system. (b): Optimal control
input.
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1The example description and corresponding MATLAB code are available
at github.com/MahsaFarjadnia/TZPC.

https://github.com/MahsaFarjadnia/TZPC
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