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I. INTRODUCTION

Machine learning models, such as neural networks and other
data-driven approaches, are being used in a wider area than
ever before. This includes safety critical systems in uncertain
and unstructured environments. As machine learning models
are complex black-box models, few tools exist to perform
safety and performance analysis for these systems. A method
that can help bridge this gap is the Scaled Relative Graph
(SRG). SRGs provide an interpretable tool to analyse complex
systems. In this article, we explain what the SRG is and how
we can draw SRGs for data-driven systems.

II. SCALED RELATIVE GRAPHS

The SRG of a linear operator T , denoted SRG(T ), is a
subset of the complex plane and is defined as follows [2]
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From the definition it follows that the SRG captures some
geometric features of the input-output pairs of the operator T .
The first term ∥y∥

∥x∥ represents the scaling of the output relative
to the input and the exponent captures the angle between the
input and output, as the angle θ between x ∈ H and y ∈ H
is usually defined as
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Re(⟨y, x⟩)
∥y∥∥x∥

.

Note that the SRG is mirrored in the real axis as it captures
both positive and negative angles.

Some conclusions that can be drawn from the SRG are for
example that the operator T is contractive if the SRG lies
inside the unit circle, as ∥y∥/∥x∥ ≤ 1 in that case. Also, if
the SRG is a subset of the right half plane the operator T is
passive, as it corresponds to Re(⟨y, x⟩) > 0.

III. SRGS FROM STATE SPACE REPRESENTATION

We consider a discrete time invariant system with input
u(k) ∈ R, output y(k) ∈ R and internal state x(k) ∈ Rn

G :

{
x(k + 1) = Ax(k) +B u(k)

y(k) = C x(k) +Du(k)
. (2)

This system represents a transfer function between in- and
output given by G(s) = C(sI − A)−1B + D. To draw the
SRG(G) of we need to use some properties of the SRG. First,
note that SRG(T − αI) = SRG(T ) − α. Next, denote the

Fig. 1. The shortest and longest distance from the point α to the set defined
by the grey area. The grey set must therefore lie inside the orange annulus.

shortest and the longest distance from a point γ ∈ C to a set
s ⊆ C as

ds(γ, s) = inf{|z − γ| : z ∈ s}
dl(γ, s) = sup{|z − γ| : z ∈ s}.

Then it follows from the definition of the SRG that

ds(α,SRG(G)) = σmin(G− αI)

dl(α,SRG(G)) = σmax(G− αI),

where σ denotes the singular value. An example of this can
be see in Figure 1, where the grey area corresponds to the
SRG. The maximum singular value is given by σmax(G) =
∥G∥L∞ . The L∞ norm of the system can be found solving
the following LMI [3]

min γ
s.t. P = PT[

ATPA− P + CTC ATPB + CTD
BTPA+DTC BTPB +DTD − γ2I

]
⪯ 0

(3)
where argmin γ = σmax(G). The minimum singular value is
given by σmin = 1/∥G−1∥L∞ . If the inverse of the system
does not exist σmin = 0. If we solve this LMI for a grid of
α ∈ R we get an annulus containing the SRG for every α. If
the range of α is wide enough the intersection of these annuli
gives an outer approximation of the SRG.

We illustrate the results with an example. Take the following
system

P :

 x(k + 1) =

[
0.5 0
0 0.9

]
x(k) +

[
2
1

]
u(k)

y(k) =
[
0.2 0.3

]
x(k) + 1u(k)

. (4)



Fig. 2. The SRG of the system P in (4).

Then the resulting SRG can be seen in Figure 2.

IV. FROM DATA TRAJECTORIES TO STATE SPACE

For a linear time invariant data driven system the
matrices A,B,C,D that define (2) are unknown. They
can however be reconstructed from persistently exciting
input-output trajectories and the SRG can be drawn using the
reconstructed state space model. As the state space model of
a system is not unique, the reconstructed system (Ã, B̃, C̃, D̃)
might not be equivalent, but it will be zero-state equivalent
and represent the same transfer function.

We define Ui,j =
[
u(i) u(i+ 1) . . . u(j − 1)

]
and Yi,j =[

y(i) y(i+ 1) . . . y(j − 1)
]

for j > i. Given an input trajec-
tory U−2,T and an output trajectory Y−2,T we construct two
matrices

X̂ =

 U0,T

Y−2,T−2

U−2,T−2

 and Ŷ =

[
Y−1,T−1

U−1,T−1

]
(5)

If rank(X̂) = 2n+1 the system is persistently exciting, which
requires T ≥ 2n + 1, the state space representation can be
reconstructed as follows [1]

[
B̃ Ã

]
= X̂Ŷ † (6)

C̃ = e⊤n X̂Ŷ †
[
01×2n

I2n

]
(7)

D̃ = e⊤n X̂Ŷ †e1. (8)

Where † denotes the pseudo inverse. Note that this realisation
is of order 2n and therefore non-minimal.

From this state-space representation we can draw the SRG
by solving the LMI in (3). An example of this can be seen in
Figure 3. Here we reconstruct the SRG from (4) using input-
output trajectories of length T = 50 where the input is a
random normal distributed signal, with zero mean and unit
variance, and additional normal distributed output noise with
variance 10−3. This SRG is very similar to the SRG of the
original system. It is lies in the same area of the complex
plane but it is slightly more narrow.

Fig. 3. The SRG of the system P in (4) reconstructed by input output
trajectories.
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