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I. INTRODUCTION

The growing prominence of generative machine learning
models [1] has raised significant concerns about data incest-
induced model collapse [2]. As synthetic content proliferates
on public platforms, it is increasingly likely to be incorpo-
rated into future training sets, leading to model degradation
[3]. This paper examines the online learning dynamics of a
group of decision-makers whose outputs are incorporated in
future training data.

We approach this problem through the lens of social
learning, a fundamental mathematical framework for mod-
eling interactions between social sensors [4, 5]. In classical
social learning models, agents form estimates of an unknown
state by combining private beliefs with the observed actions
of others. These models typically assume that each agent
updates her private prior (PP) belief as new actions are
revealed. A second architecture is considered, inspired by
Word-of-Mouth (WoM) learning [6, 7], in which only the
initial agent has access to external state information, while
all subsequent agents rely solely on the propagated beliefs
of their predecessors. The final agent broadcasts her belief
to the entire network, thus creating a shared public dataset.

II. PROBLEM FORMULATION

A set I = {1, . . . ,m} of agents aim to learn a time-
dependent state of nature from private online measurements.
The agents are only allowed to operate sequentially, i.e., one
cannot take actions before her predecessor.

A. Model and Agent Description

We consider a data-generating mechanism governed by the
asymptotically stable first-order autoregressive dynamics:

xk = axk−1 + wk, k ∈ N, (1)

where xk, wk ∈ R are the state of the system and the process
noise at time k, respectively. We assume that the agents i ∈ I
can measure changes in the state according to:

yik = xk + ni
k, k ∈ N, i ∈ I, (2)

where yik, n
i
k ∈ R are the observed output and the mea-

surement noise of agent i at time k, respectively. The
random variables x0, (wk) and (ni

k) are assumed mutually
independent, with x0 ∼ N (x̂0, p0), wk ∼ N (0, q), and ni

k ∼
N (0, rik). An agent i implementing (1) and (2) can optimally
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estimate xk from her own local observations {ỹi1, . . . , ỹik} by
using the Kalman filter update rule

pik|k−1 = a2pik−1|k−1 + q,

x̂i
k|k−1 = ax̂i

k−1|k−1,

αi
k = pik|k−1/(p

i
k|k−1 + rik),

pik|k = pik|k−1(1− αi
k),

x̂i
k|k = x̂i

k|k−1 + αi
k(ỹ

i
k − x̂i

k|k−1),

(3)

where the variances pik|k−1 and pik|k, as well as the Kalman
gains αi

k, do not depend on data, and are assumed to be
publicly available to all agents. We will denote by (vik) the
additive white Gaussian noise injected immediately before i,
where vik ∼ N (0, si) and si ∈ R>0. We also assume that
(vik) is independent of the other random variables, namely
x0, (wk), and (vjk) for i ̸= j.

B. Private-Prior Setup

The prediction step does not depend on the most recently
collected measurement ỹik, and hence

pik|k−1 = a2pik−1|k−1 + q,

x̂i
k|k−1 = ax̂i

k−1|k−1

(4)

can be updated independently by each i ∈ I using her private
prior information x̂i

k−1|k−1 of xk−1. On the other hand, the
a-posteriori update depends on the estimate of other decision-
makers. At each time step k, the leftmost agent can observe
the unknown state directly through y1k = xk + v1k. This
observation model is the same as in (2), but with n1

k = v1k.
Thus, the estimates for agent 1 can be obtained from (3).
The Kalman filters of subsequent agents i ∈ I \ {1} can see
the estimate of its predecessor, after the processing operation

yik = xk + ni−1
k + vik/α

i−1
k .

Using a recursive expression, we are able to define the
equivalent noise ni

k := ni−1
k + vik/α

i−1
k , which is a zero-

mean Gaussian random variable. The posterior mean x̂i
k|k is

obtained with the following measurement update:

αi
k = pik|k−1

/[
pik|k−1 + s1 +

∑i
j=2 s

j
/(

αj−1
k

)2]
,

pik|k = pik|k−1(1− αi
k),

x̂i
k|k = x̂i

k|k−1 + αi
k(ỹ

i
k − x̂i

k|k−1), i ∈ I.

(5)

C. Word-of-Mouth Setup

Our previous derivations can be used as the starting point
for describing WoM social learning. After substituting the



quantity xi
k−1|k−1 = xm

k−1|k−1 into (3) we obtain

pik|k−1 = a2pmk−1|k−1 + q,

x̂i
k|k−1 = ax̂m

k−1|k−1,

αi
k = pmk|k−1/

[
pmk|k−1 + s1 +

∑i
j=2 s

j
/(

αj−1
k

)2]
,

pik|k = pmk|k−1(1− αi
k),

x̂i
k|k = x̂m

k|k−1 + αi
k(ỹ

i
k − x̂m

k|k−1),

(6)

that is, the update rule for WoM social learning.

III. ANALYSIS OF PP AND WOM LEARNING

A. Private-Prior Setup

We expect the following cascade behavior to manifest for a
cascade of agents embedded in a PP setup: after the Kalman
Filter of agent i converges to her steady-state, so will do the
Kalman filter of agent i+ 1, for every i ∈ I \ {m}.

Theorem 1: Consider the PP interconnection of Kalman
filters implementing (4) and (5). Then, there exists a unique
positive solution pi∞ to

pi∞ = a2pi∞ − (api∞)2

pi∞ + ri∞
+ q, i ∈ I,

where ri∞ = s1 +
∑i

j=2 s
j/(αj−1

∞ )2. Furthermore, (1 −
αi
∞)a ∈ (−1, 1), and pik|k−1 → pi∞ for any pi1|0 ∈ R>0.

This result holds for every i ∈ I.

B. Word-of-Mouth Setup

To characterize the asymptotic behavior of the predicted
variance when the agents implement the WoM setup, we
study the following update rule:

T (pmk|k−1) = a2

(
pmk|k−1r

m
k

pmk|k−1 + rmk

)
+ q. (7)

The following theorem formalizes the existence of a unique
positive fixed point for (7).

Theorem 2: Consider the WoM interconnection of
Kalman filters implementing (6). Then, (7) has a unique
positive fixed point pm∞.
Theorem 2 tells us that, if the positive sequence (pmk|k−1)
is convergent, then it must converge to pm∞. The following
theorem establishes the convergence of (pmk|k−1) to pm∞ for
the case m = 2.

Theorem 3: If m = 2, then (7) admits a unique positive
fixed point p2∞, and p2k|k−1 → p2∞ for any p21|0 ∈ R>0.
For more details the reader is referred to [8].

IV. NUMERICAL EXAMPLES

A key finding of our study is that some agents, particu-
larly those with large i ∈ I attain smaller pik|k−1, benefit
from using the public belief (WoM) rather than relying on
their private knowledge (PP). Intuitively, as i increases, the
prediction and posterior variances increase, due to the larger
variance of the equivalent noise. Thus, in the WoM setup, all
the agents (save for the last one) are forced to use a more
spread-out prior than their own. Inevitably, agent 1, who

Fig. 1: Asymptotic behavior of the prediction error variances
in the PP (upper panel) and WoM cases (lower panel).

alone can enjoy measurement noise with constant variance,
will suffer a performance degradation, and output a larger
Kalman gain compared to the (optimal) private-prior case.
In other words, it will put more trust on the measurements
than on its prior. As a result of this, the next agent will
enjoy an equivalent noise with smaller variance. Together
with being fed worse prior knowledge, she will also trust
her measurements (i.e., the estimate of her predecessor) more
than her prior belief, resulting in a larger Kalman gain. One
can apply this reasoning inductively to all agents with i > 1,
and when it comes to the last agent, the variance of her
equivalent noise has decreased considerably compared to the
PP case. This, plus the fact that she has been using her own
prior (which corresponds to the public prior in the WoM
case), makes the Kalman filter of agent m converge to a
steady-state filter with a smaller prediction error variance
pm∞ than in the PP setup. This is evident in Figure 1.
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