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Abstract— Acoustic manipulation in microfluidic devices
enables contactless handling of biological cells for Lab-on-Chip
applications. This extended abstract analyzes the controllability
of multi-particle systems in one-dimensional acoustic standing
waves using multi-modal actuation. By modeling the system
as a nonlinear control system, we investigate global and
local controllability, quantifying the impact of mode numbers.
Our findings demonstrate that sufficient modes ensure dense
reachability sets globally, while mode mixing with 10 modes
achieves local controllability in 80% of the state space for a
two-particle system. These results provide theoretical insights
for designing efficient acoustic manipulation algorithms in
biomedical applications.

Index Terms— Biotechnology, Acoustic manipulation,
Controllability analysis

I. INTRODUCTION

Lab-on-Chip (LOC) technologies are revolutionizing
biomedical applications by enabling miniaturized,
automated handling of biological cells. Acoustic
manipulation, a contactless technique, is particularly
promising for manipulating microscale particles and cells
within microfluidic devices [1], [2]. Traditional acoustic
manipulation relies on a single resonance mode, but recent
advances in multi-modal actuation allow precise control
of individual particle trajectories [3], [4], [5], potentially
enabling single-cell manipulation at reduced costs compared
to optical traps.

This work addresses the controllability of multi-particle
systems in a one-dimensional (1D) acoustic standing
wave, modeled as a nonlinear control system. We analyze
global controllability among stable equilibria and local
controllability via mode mixing, focusing on a two-particle
system for clarity. Our contributions include constructing a
controllability graph to demonstrate dense reachability with
sufficient modes and quantifying local controllability regions
through simulations. Fig. 1 illustrates the manipulation
process, depicting particle configuration changes driven by a
1D standing wave.
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Fig. 1. Schematic of acoustic manipulation. (Top) Particle configuration
changes due to a 1D standing wave from t1 to t2. (Bottom) State-space
representation of the process.

II. SYSTEM MODELING

We model the motion of n particles in a 1D acoustic
standing wave within a channel of height H . The acoustic
radiation force on a particle i at position xi(t) ∈ [0, H] is
derived from the Gorkov potential [6], [7]:

U(xi(t), u) =
3

2
ViEac,uΦi cos

(
2π

u

H
xi(t)

)
+ const.,

where Vi, Φi, and Eac,u are the particle volume, contrast
factor, and mode energy, respectively, and u ∈ N is the
mode number. Balancing acoustic and Stokes’ drag forces,
and neglecting inertia due to dominant viscous effects [8],
the dynamics simplify to:

ẋi(t) = ci,uu sin
(
2π

u

H
xi(t)

)
, ci,u =

πa2iΦiEac,u

2Hη
,

where ai is the particle radius and η is the fluid viscosity.
Scaling positions to [0, 1] by xi/H , the system for n particles
is:

ẋi = Aiu sin(2πuxi), x = [x1, . . . , xn]
⊤ ∈ [0, 1]n,

for all u ∈ {1, . . . , N}, where Ai are constants (assumed
mode-independent for controllability analysis, as justified by
Lemma 1 in the original paper). The system is nonlinear and
multi-stable, with stable and unstable equilibria determined
by the mode u.



III. CONTROLLABILITY ANALYSIS

A. Global Controllability

Global controllability is analyzed over assignable stable
equilibria, defined as Ek = {( 2i1−1

2k , . . . , 2in−1
2k ) : ij ∈

{1, . . . , k}} for mode k, with EN = ∪N
k=1Ek. We construct

a controllability graph GN with vertices EN and edges
between equilibria reachable by applying a single mode.
The graph’s strongly connected components (SCCs) indicate
reachable equilibria sets.

Fig. 2 shows SCCs for a two-particle system with N =
8, 12 modes, excluding diagonal effects (where x1 = x2).
As N increases, the number of disconnected components
decreases, and at N = 9, all equilibria in {0 < x2 <
x1 < 1/2} are reachable. Including diagonal effects (e.g.,
transitions like E3(1, 1) → E3(1, 2)) enhances connectivity,
making the graph strongly connected for N = 9 in ]0, 1/2[2

(Fig. 3). Theorem 1 (original paper) proves that with A1 ̸=
A2, reachability sets become dense as N → ∞.
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Fig. 2. Strongly connected components of the controllability graph for
N = 8, 12 without diagonal effects.
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Fig. 3. Controllability graph with diagonal effects for N = 6, 9.

B. Local Controllability

Local controllability is studied via mode mixing,
relaxing the system to a differential inclusion
ẋ ∈ co(F (x)), where F (x) = {fu(x) =
[A1u sin(2πux1), . . . , Anu sin(2πuxn)]

⊤ : u ∈
{1, . . . , N}}. A state x is locally controllable if
x ∈ int co(F (x)), allowing movement in any direction.
Using the Filippov-Ważewski theorem [9], the relaxed
system’s reachability approximates the original system’s.

For a two-particle system (a1 = 1 µm, a2 = 2 µm, H =
800 µm), we discretize the state space into a 159x159 grid
(5 µm spacing) and test local controllability. Fig. 4 shows
that with N = 5, 58.4% of states are locally controllable;
N = 10 achieves 80%. States on symmetry lines (x1 = x2

or xi = 1/2) are uncontrollable due to colinear fu(x). Fig.
?? illustrates that for p = 2 to 10 particles, N ≥ p + 1 is

required for controllability, with diminishing returns as N
increases for larger p.

Fig. 4. Approximation of locally controllable states (N = 5, 58.4%
controllable) in a 159x159 grid. Percentage of locally controllable states
vs. N for p = 2 to 10 particles.

IV. CONCLUSION

This analysis establishes theoretical foundations for multi-
modal acoustic manipulation in 1D standing waves. Global
controllability ensures dense reachability with sufficient
modes, while local controllability via mode mixing achieves
80% state space coverage with 10 modes in a two-particle
system. These insights guide the design of efficient control
algorithms for LOC applications. Future work will extend to
multi-particle systems and experimental validation.
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