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INTRODUCTION

Knowledge of the internal state of lithium-ion batteries
is crucial for the development of safe optimal charging
control algorithms. Most commonly graphite is used as
negative electrode, exhibiting high specific capacity and
good cycling stability. When such lithium ion batteries
are charged, lithium intercalates into the layered carbon
structure, and the electrode material transitions through
a series of phases differentiated by the number of carbon
layers between each lithium layer. Each phase has dif-
ferent electrochemical properties, making it interesting to
accurately know the phase content to e.g. guarantee safe
charging control. The phase content, however, can only be
directly measured through X-ray diffraction experiments,
which is not feasible in any battery application. In this
work a method based on kernel smoothing is introduced for
estimating the phase content of graphite electrodes from
the electrode potential, which is readily measurable.

METHODS

The method utilizes the phenomenon where both the
evolution of the graphite phases and the electrochemical
signals become smoother at higher charging currents (due
to the increased phase heterogeinity in the electrode mate-
rial). The estimation is performed in two main steps, first
a reference measurement is performed. In this measure-
ment the battery is charged slowly from a fully discharged
state, approximating the open circuit potential of the cell.
During the reference measurement, the phase evolution is
also monitored using incremental capacity analysis (ICA).

Once the reference phase evolution and electrochemical
signal has been gathered, real time phase estimation at
a higher current (the target measurement) is possible.
This is performed by fitting a Gaussian kernel density
function (KDF), such that applying it on the reference
measurement results in a smoothing which fits the target
electrochemical measurements. Once the KDF is fitted, it
can then be applied on the reference phase evolution to
estimate the phase content in the target measurement.

Estimating the reference phases

ICA is a commonly used tool for tracking phase transi-
tions during electrochemical cycling (Fly and Chen, 2020),
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Fig. 1. Simulated normalized weight fraction of phases dur-
ing C/60 lithiation (solid lines), plotted together with
dx/dUn curve (dashed lines). It is noted that knee
points in the ICA (black squares) coincide with knee
points in the phase profile. The resulting reference
phase estimation is also shown in the Figure as the
dotted weight fraction lines.

as peaks in the IC curve represent phase shifts in the
electrode materials. At low rate charging, at most two
phases are present in the graphite electrode at a time,
and this is also corroborated by our simulations shown in
Figure 1, using a reaction limited electrochemical model
(Huang et al., 2025). It is also noted that the phase
content changes linearly. Assuming that both conditions
hold (linear changes, two active phases), then it is sufficient
to find the knee points of the phase peaks in Figure 1 to
determine the full phase evolution.

Inspectively, it is also observed that the knee points of the
IC curve in Figure 1 correspond well in state of charge
(SOC, x in LixC6) to the knee points of the phase peaks.
These knee point locations can then provide estimates of
the knee points in the phase evolution, and can thus be
used to estimate the reference phase evolution. To find the
knee point locations, the Bacon and Watts model (Bacon
and Watts, 1971) is fitted on each interval between the
extreme points of the IC curve. The resulting piece-wise
linear phase estimation is shown as dotted lines in Figure 1.

Fitting the kernel density function

Let (xR(t), yR(t)), t ∈ [tiR, t
f
R] define the measured SOC

and the electrode potential from the reference measure-
ment, and let (xT , yT ) represent the target measurement.
The optimization goal is to estimate the phase evolution
for the target measurement by smoothing the reference

phase evolution piR(t), t ∈ [tiR, t
f
R], where i = 1, ..., 4

represents the 4 phases of graphite. This is done by using
a truncated Gaussian smoothing kernel
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where σ is the parameter to be fitted, µ = xT corresponds
to the SOC, and φ(x) is the probability density function
of the standard normal distribution. The KDF is used to
smooth the reference measurement such that the expected
value of yR over f matches the target measurement yT ,
i.e. minimizing

e2y = (Efµσ
[yR]− yT )

2, (2)

where Efµσ [·] =
∫ tf

R

ti
R

[·](t)fµσ(xR(t))dt. To promote conti-

nuity in σ, a forgetting factor λ ∈ [0, 1] is introduced to
formulate a constrained recursive least squares problem,
which is solved for each new target measurement (xT , yT ) :

min
σT

n∑
k=1
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2,

s.t. σT ≥ 0,

(P)

where n is the index of the latest measurement. Once a
solution σ∗

T of (P) is found, the estimated weight fraction
of each phase i is given by piT = EfµT σ∗

T

[piR].

RESULTS

Simulated charging of graphite half-cells was performed
using the model described in (Huang et al., 2025) for the
C-rates C/60, C/40, C/20, C/10, and C/5. The C/60 cycle
was used as reference, from which the reference phase evo-
lution was estimated using ICA (shown in Figure 1). The
phase evolutions of the remaining cycles were estimated
via kernel smoothing of this reference phase evolution. The
estimation results are presented in Table 1, with plots
of the electrode potential fit for C/5 lithiation shown in
Figure 2 and the estimated phase evolution for C/5 lithia-
tion is shown in Figure 3. This shows that the estimation
error remains low for all currents tested, and while the
error increases for the higher C-rate lithiation, the phase
estimation error remains lower than the reference phase
estimation error. From Table 1 it can also be seen that
the fitted standard deviation σ increases for higher C-
rates, this represents an increased inhomogeneity at higher
currents.

DISCUSSION

The findings indicate that kernel smoothing is a vi-
able technique for estimating the phase content within
a graphite half-cell from the negative electrode potential,
underscoring the method’s potential applicability. It is rec-
ommended that future research should apply this method
on full battery cells, which include a positive electrode
component. The graphite electrode phase transitions could
remain dominant in the electrochemical signals, depending
on the electrode material utilized. This would permit the
application of the estimation method, albeit with an in-
creased estimation uncertainty. Given that critical degra-
dation phenomena, such as lithium-plating, depend on the
internal states of the battery, integrating phase estimation
into battery management systems may enhance the safety
of fast charging applications.

Fig. 2. Plot of fitting accuracy, showing the reference
(blue), the target (red) and the smoothed (yellow)
negative electrode potential. The smoothed potential
is found by applying the fitted KDF on the reference
potential, and it is plotted together with 68% confi-
dence bounds (±1σ).

Fig. 3. Comparison of estimated phase fractions (dotted
lines) and ground truth phase fractions (solid lines)
for simulated C/5 lithiation of a graphite half-cell.

Table 1. Mean of fitted σT , mean squared er-
rors (MSE) of curve fit (yT ), and phase predic-
tion (pT ), for different C-rates. Also included
is the MSE of the reference phase estimation.

MSE is given in terms of 10−4.

C-rate Mean(σT ) MSE yT MSE pT
Ref - - 8.3

C/40 0.0022 0.395 5.45
C/20 0.0022 0.440 5.35
C/10 0.0093 0.453 4.43
C/5 0.0172 0.412 7.07
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