
AutoLyap: A Python package for computer-assisted Lyapunov
analyses for first-order methods

Manu Upadhyaya⋆ Adrien B. Taylor† Sebastian Banert‡ Pontus Giselsson⋆

⋆Department of Automatic Control, Lund University, Lund, Sweden
{manu.upadhyaya, pontus.giselsson}@control.lth.se

†INRIA & D.I. École Normale Supérieure, CNRS & PSL Research University, Paris, France
adrien.taylor@inria.fr

‡Center for Industrial Mathematics, University of Bremen, Bremen, Germany
banert@uni-bremen.de

Abstract
We introduce AutoLyap, a Python package designed to automate Lyapunov analyses for a wide class of

first-order methods for solving structured optimization and inclusion problems. Lyapunov analyses are structured
proof patterns commonly used to establish convergence results for first-order methods. Building on previous
work [2], the core idea behind AutoLyap is to recast the verification of the existence of a Lyapunov analysis as a
semidefinite programming (SDP) problem, which can then be solved numerically using standard SDP solvers.
Users of the package specify (i) the optimization or inclusion problem, (ii) the first-order method in question,
and (iii) the type of Lyapunov analysis they wish to verify. Once these inputs are provided, AutoLyap handles
the SDP modeling and proceeds with the numerical solution of the SDP. We numerically verify—and in some
cases extend—numerous established convergence results, demonstrating the practical relevance of our approach.

Keywords. Software, first-order methods, operator splitting methods, performance estimation, Lyapunov analysis,
semidefinite programming

1 Introduction
Optimization and fixed-point algorithms are fundamental tools in various fields, such as automatic control, machine
learning, and inverse problems. First-order methods, in particular, are favored for their simplicity and scalability
when handling large-scale problems. However, the theoretical justification and analysis of first-order methods are
typically reserved for experts in the field. The primary objective of this work is to automate the most challenging
aspects of the analysis process by generating convergence proofs in a straightforward and reproducible manner.

1.1 Scope
This extended abstract highlights our methodology through a simple example. For the complete package documen-
tation, theoretical development, full proofs, and a broader set of examples, readers are referred to the full-length
version.

2 Nesterov’s fast gradient method
Consider the optimization problem

minimize
x∈Rn

f(x) (1)

where f : Rn → R is convex with L-Lipschitz continuous gradient for some constant L > 0. In the seminal paper
[1], Nesterov presents a fast gradient method that achieves the optimal convergence rate (up to a constant) among
all first-order methods that solve (1). It is given by initializing λ0 = 1 and x−1, x0 ∈ Rn, and letting

(∀k ∈ N0)
[

yk = xk + αk(xk − xk−1),
xk+1 = yk − 1

L ∇f(yk),
where

αk = λk−1
λk+1

,

λk+1 = 1+
√

1+4λ2
k

2 .
(2)

1

mailto:manu.upadhyaya@control.lth.se
mailto:pontus.giselsson@control.lth.se
mailto:adrien.taylor@inria.fr
mailto:banert@uni-bremen.de

100 101 102
10−4

10−3

10−2

10−1

k

2L/(k + 2)2

L/(2λ2
k)

AutoLyap c

Figure 1: Convergence rates for (2), with AutoLyap tightening the classical rates of [1]

Based on a Lyapunov analysis, [1] gives the convergence rates

(∀k ∈ N)(∀x⋆ ∈ argmin
x∈Rn

f(x)) f(xk) − f(x⋆) ≤ L∥x0 − x⋆∥2

2λ2
k

≤ 2L∥x0 − x⋆∥2

(k + 2)2 . (3)

The fundamental proof structure behind obtaining the rates in (3) is by constructing a sequence of chained Lyapunov
functions V(0), . . . , V(k) such that

V(k) ≤ V(k − 1) ≤ . . . ≤ V(1) ≤ cV(0), (4)

under quadratic ansatzes1

(∀τ ∈ J0, kK) V(τ) = ⟨(xτ , xτ−1, x⋆, ∇f(xτ), ∇f(yτ)), (Qτ ⊗ I)(xτ , xτ−1, x⋆, ∇f(xτ), ∇f(yτ))⟩
+ ⟨qτ , (f(xτ), f(yτ), f(x⋆))⟩,

for parameters Q⊤
τ = Qτ ∈ R5×5 and qτ ∈ R3, where the initial parameters (Q0, q0) are chosen such that

V(0) = ∥x0 − x⋆∥2 and the final parameters (Qk, qk) are chosen such that V(k) = f(xk) − f(x⋆), and the goal is to
minimize the constant c ≥ 0.

The key idea behind the AutoLyap package (specialized to this particular method and Lyapunov analysis) is that
minimizing c under the constraint that (4) holds can equivalently be written as an SDP and solved numerically.
This is done below for the case of k = 10. The same procedure is repeated while sweeping k from 1 to 100, and the
result is presented in Figure 1.

1 from autolyap . problemclass import InclusionProblem , SmoothConvex
2 from autolyap . algorithms import NesterovFastGradientMethod
3 from autolyap . automated_analysis_tools import IterationDependent
4

5 k = 10 # Iteration budget
6 L = 1 # The Lipschitz constant
7 components_list = [
8 SmoothConvex (L=L), # The properties of the function f
9]

10 problem = InclusionProblem (components_list) # Considers 0 ∈ {∇f(x)}, i.e., ∇f(x) = 0
11 algorithm = NesterovFastGradientMethod (L=L) # Contains the update equation (2)
12

13 (Q_0 , q_0) = IterationDependent . get_parameters_distance_to_solution (algorithm , k=0) #
Initial Lyapunov function parameters

14

15 (Q_k , q_k) = IterationDependent . get_parameters_function_value_suboptimality (algorithm ,
k=k, j=2) # Final Lyapunov function parameters

16

17 c = IterationDependent . verify_iteration_dependent_Lyapunov (problem , algorithm , k, Q_0 ,
Q_k , q_0 , q_K) # Formulates and solves the SDP

References
[1] Y. Nesterov. “A method for solving the convex programming problem with convergence rate O(1/k2)”. In:

Dokl. Akad. Nauk SSSR 269.3 (1983), pp. 543–547.
[2] M. Upadhyaya, S. Banert, A. B. Taylor, and P. Giselsson. “Automated tight Lyapunov analysis for first-order

methods”. In: Mathematical Programming 209 (2025), pp. 133–170. doi: 10.1007/s10107-024-02061-8.
1Here ⊗ denotes the Kronecker product, and ⟨·, ·⟩ the standard dot product.

2

https://doi.org/10.1007/s10107-024-02061-8

	Introduction
	Scope

	Nesterov's fast gradient method

