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Abstract— Regularized system identification has become a
significant complement to more classical system identification.
Kernel-based regularized estimators often perform better than
the maximum likelihood estimator in terms of minimizing
mean squared error (MSE), but often require hyper-parameter
estimation. This paper focuses on ridge regression and the
regularized estimator by employing the empirical Bayes hyper-
parameter estimator. We utilize the excess MSE expressions to
develop a family of generalized Bayes estimators and a family
of closed-form biased estimators. They have the same excess
MSE as the empirical-Bayes-based regularized estimator, but
eliminate the need for hyper-parameter estimation.

I. PRELIMINARIES AND PROBLEM STATEMENT

We consider the following linear regression model,

Y = Φθ +E,

where Y ∈ RN is the measurement output vector with N
being the sample size, Φ ∈ RN×n is a lower triangular
matrix consisting of inputs, and θ ∈ Rn is the model
parameter vector to be estimated. The measurement noise
vector E ∈ RN is assumed to follow N (0, σ2IN ). Given an
estimator θ̂ ∈ Rn of the unknown parameter θ, we evaluate
its average performance by its mean squared error (MSE):
MSE(θ̂) = E(∥θ̂−θ0∥22), where θ0 ∈ Rn is the “true” value
of θ and the expectation E is with respect to the measurement
noise E. The smaller its MSE, the better its performance.

A. Maximum likelihood and regularized estimators

One classical estimator of θ is the ML estimator given
by θ̂ML = (Φ⊤Φ)−1Φ⊤Y . It is well-known that θ̂ML is
unbiased but may have a large variance, which will result in
large MSE(θ̂ML) = σ2 Tr[(Φ⊤Φ)−1]. To achieve a better
bias-variance trade-off, we consider the following regularized
ridge regression estimator,

θ̂R(η̂) =[Φ⊤Φ+ (σ2/η̂)In]
−1Φ⊤Y , (1)

where η̂ is a hyper-parameter estimator. A commonly used
hyper-parameter estimator is the EB one [4], given by

η̂EB =argmin
η>0

FEB(η),

FEB(η) =Y ⊤Q(η)−1Y + log det(Q(η))

with Q(η) = ηΦΦ⊤ + σ2IN . Correspondingly, θ̂R(η̂EB) in
the form of (1) will be referred to as the EB-based regularized
estimator in this paper.

B. Problem statement

Since MSE(θ̂R(η̂EB)) is analytically intractable in finite-
sample scenarios, we apply a high-order asymptotic quantity:
the excess MSE (XMSE) [2]. It can be used to quantify
the difference between MSE(θ̂R(η̂EB)) and MSE(θ̂ML) for
large sample sizes. Based on [2, Theorem 2], we can derive
the XMSE of θ̂R(η̂EB).

Lemma 1: Assume that limN→∞ Φ⊤Φ/N = In. We
then have XMSE(θ̂R(η̂EB)) = (−n2 + 4n)(σ2)2/∥θ0∥22.

In this work, we consider the following two problems.
1) Is it possible to design a generalized Bayes estimator1

that has the same XMSE as θ̂R(η̂EB)? It is free of
hyper-parameters, thereby eliminating the computa-
tional cost associated with estimating such parameters.

2) Although a generalized Bayes estimator does not need
any hyper-parameter, it often needs to be computed
using sampling methods. The question thus arises
whether it is possible to design a biased estimator in
closed form that has the same XMSE as θ̂R(η̂EB).

II. BAYES AND BIASED ESTIMATORS

We first design generalized Bayes estimators that have the
same XMSE as θ̂R(η̂EB).

Theorem 1: If the weighting function of θ̂Bayes,EB is

π(θ) = ∥θ∥2−n
2 (C1∥θ∥2 + C2∥θ∥−1

2 )2, (3)

where C1, C2 ∈ R are arbitrary constants, we then have
XMSE(θ̂Bayes,EB) = XMSE(θ̂R(η̂EB)).

We then design the following biased estimators that have
the same XMSE as θ̂R(η̂EB) and θ̂Bayes,EB.

Theorem 2: If θ̂Biased,EB = θ̂ML + (1/N)bN (θ̂ML) and

bN (θ̂ML) = σ2N(Φ⊤Φ)−1

×

[
2− n+

2(C1∥θ̂ML∥2 − C2∥θ̂ML∥−1
2 )

C1∥θ̂ML∥2 + C2∥θ̂ML∥−1
2

]
θ̂ML

∥θ̂ML∥22
, (4)

where C1, C2 ∈ R are arbitrary constants, then we have
XMSE(θ̂Biased,EB) = XMSE(θ̂Bayes,EB) = XMSE(θ̂R(η̂EB)).

III. NUMERICAL SIMULATION

We generate 100 collections of test systems and input-
output data. For each collection, 1) we generate θ̃0 as a
realization of N (0, In) and scale θ0 = mθθ̃0 such that

1For a generalized Bayes estimator, its nonnegative weighting function
π(θ) can be improper, i.e.,

∫
π(θ)dθ = +∞.



∥θ0∥2 = 1; 2) generate {ũ(t)}Nt=1 as independent realiza-
tions of N (0, 1) and set σ2 = 1; 3) scale u(t) = muũ(t)
such that the sample SNR, which is the ratio between the
sample variance of Φθ0 and the measurement noise variance
σ2, is 5; 4) corrupt the noise-free output Φθ0 with NMC =
200 additive independent noise realizations of N (0, σ2In),
to obtain NMC measurement output sequences {y(t)}Nt=1.

For each collection of test system and input-output data,
we will perform NMC = 200 Monte Carlo (MC) simulations.
The regularized estimator θ̂R(η̂EB) will be implemented
using [1, Algorithm 2]. The Bayes estimator θ̂Bayes,EB will
be approximated using the sampling method. The average
performance of an estimator θ̂ will be measured by the
sample mean of ∥θ̂−θ0∥2 over 200 MC simulations, referred
to as the sample MSE(θ̂). As its relative version, the average
FIT(θ̂) [3] is given by the sample mean of FIT(θ̂) =
100× (1−∥θ̂ − θ0∥2/∥θ0 − θ̄0∥2) with θ̄0 = 1

n

∑n
k=1[θ0]k

over 200 MC simulations. The better θ̂ performs, the smaller
its sample MSE, while the larger its average FIT.

We consider the following two settings: 1) n = 1 N = 5,
and Ms = 200, 2) n = 5, N = 15, and Ms = 500. From Fig.
1-2, we can observe that for n = 1, N = 5, θ̂ML outperforms
θ̂R(η̂EB), while for n = 5, N = 15, the performance of θ̂ML

is worse, which confirms the discussions after Lemma 1;
for at least one combination of C1 and C2, θ̂Bayes,EB with
(3) and θ̂Biased,EB with (4) perform similarly to θ̂R(η̂EB);
among different combinations of C1 and C2, for n = 1,
θ̂Bayes,EB and θ̂Biased,EB with C1 = 1, C2 = 0 perform
the best; while for n = 5, θ̂Bayes,EB and θ̂Biased,EB with
C1 = 0, C2 = 1 perform the best.

Fig. 1: Sample means of the sample MSE and the average
FIT for n = 1 and N = 5.

For larger n and N , the influence of different ratios of
C1 and C2 on the performance of θ̂Bayes,EB and θ̂Biased,EB

becomes weaker. In Fig. 3 and Table2 I, we consider n = 80,
N = 360, and Ms = 5 × 103. We can observe that the

2For θ̂Bayes,EB and θ̂Biased,EB, we first calculate the total computing
time, and the sample means of the average FIT and the sample MSE over
100 collections of test systems and data. Then, we calculate the sample
means of these three statistics over different combinations of C1 and C2.

Fig. 2: Sample means of the sample MSE and the average
FIT for n = 5 and N = 15.

performance of θ̂R(η̂EB) is quite close to that of θ̂Bayes,EB

and θ̂Biased,EB, while its computing time is over twice that
of θ̂Bayes,EB and over 500 times that of θ̂Biased,EB.

Fig. 3: Sample means of the sample MSE and the average
FIT for n = 80 and N = 360.

TABLE I: Sample means of the sample MSE, the average
FIT, and the total computing time for n = 80 and N = 360.

θ̂R(η̂EB) θ̂Bayes,EB θ̂Biased,EB

sample MSE 5.37× 10−2 5.43× 10−2 5.37× 10−2

average FIT 76.81 76.69 76.81
computing time (s) 1.81× 103 6.68× 102 3.51
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